Developments of Manufacturing Systems with a Focus on Product and Process Quality

  • Thorsten WuestEmail author
Part of the Springer Theses book series (Springer Theses)


In this section MS as well as recent developments in the area of holistic IM and related topics will be presented. Furthermore, certain basic aspects of manufacturing, MS and related areas are described in detail in order to allow readers to familiarize themselves with the fundamental terms and definitions used throughout this dissertation. In each subsection, concluding paragraphs summarize how the described topic is relevant to the research and putting it in perspective. Main principles and how they are utilized throughout this dissertation is summarized there.


Manufacturing Process Manufacturing System Intelligent Manufacturing Process Quality Improvement Develop Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aggarwal, C. (Ed.). (2013). Managing and Mining Sensor Data. New York: Springer. doi: 10.1007/978-1-4614-6309-2.
  2. Almeida, F. L. F. (2011). Designing and implementation of an intelligent manufacturing system. Journal of Industrial Engineering and Management, 4(4), 718–745. doi: 10.3926/jiem.371.CrossRefGoogle Scholar
  3. Arbor, A. (2000). Modeling and diagnosis of multistage manufacturing processes—part I—state space model. In JAPAN/USA Symposium on Flexible Automation 2000 (p. 8).Google Scholar
  4. Auer, T. (2010). ABC des Wissensmanagements (p. 41). Hedingen. Retrieved from
  5. Augustin, S. (1990). Information als Wettbewerbsfaktor: Informationslogistik—Herausforderung an das Management. Köln: TÜV Media GmbH.Google Scholar
  6. Aytug, H., Bhattacharyya, S., Koehler, G. J., & Snowdon, J. L. (1994). A review of machine learning in scheduling. IEEE Transactions on Engineering Management, 41(2), 165–171.CrossRefGoogle Scholar
  7. Baker, A. D. (1988). Complete manufacturing control using a contract net: A simulation study. In International Conference on Computer Integrated Manufacturing, 1988 (pp. 100–109). doi: 10.1109/CIM.1988.5399.
  8. Batini, C., & Scannapieca, M. (2006). Data quality: Concepts, methodologies and techniques. Heidelberg, Berlin: Springer.Google Scholar
  9. Beach, R., Muhlemann, A. P., Price, D. H. R., Paterson, A., & Sharp, J. A. (2000). The selection of information systems for production management: An evolving problem. International Journal of Production Economics, 64(1–3), 319–329. doi: 10.1016/S0925-5273(99)00069-9.CrossRefGoogle Scholar
  10. Becker, T. (2008). Prozesse in produktion und supply chain optimieren (2nd ed.). Berlin, Heidelberg: Springer.Google Scholar
  11. Bowden, R., & Bullington, S. F. (1996). Development of manufacturing control strategies using unsupervised machine learning. IIE Transactions, 28(4), 319–331.Google Scholar
  12. Branch, J. W., Giannella, C., Szymanski, B., Wolff, R., & Kargupta, H. (2013). In-network outlier detection in wireless sensor networks. Knowledge and Information Systems, 34(1), 23–54. doi: 10.1007/s10115-011-0474-5.CrossRefGoogle Scholar
  13. Brinksmeier, E. (1991). Prozeß-und Werkstückqualität in der Feinbearbeitung. Fortschritt-Berichte VDI, Reihe 2: Fertigungstechnik (p. 256), Düsseldorf: VDI-Verlag.Google Scholar
  14. CEN. (2003). Manufacturing processes—terms and definitions, division (DIN EN ISO 8580:2003). Comité Européen de Normalisation (english: European Committee for Standardization).Google Scholar
  15. CEN. (2005). Quality management systems—fundamentals and vocabulary (DIN EN ISO 9000:2005). Comité Européen de Normalisation (english: European Committee for Standardization).Google Scholar
  16. CEN. (2008). Quality management systems—requirements (DIN EN ISO 9001:2008). Comité Européen de Normalisation (english: European Committee for Standardization).Google Scholar
  17. Chand, S., & Davis, J. (2013). What is smart manufacturing? Time. Google Scholar
  18. Chinnam, R. B., & Baruah, P. (2009). Autonomous diagnostics and prognostics in machining processes through competitive learning-driven HMM-based clustering. International Journal of Production Research, 47(23), 6739–6758. doi: 10.1080/00207540802232930.CrossRefGoogle Scholar
  19. Choe, J. (2004). The consideration of cultural differences in the design of information systems. Information and Management, 41(5), 669–684. doi: 10.1016/ Scholar
  20. Christopher, M. (2005). Logistics and supply chain management—creating value-adding networks. Harlow: FT Prentice Hall.Google Scholar
  21. Collins, J. (1980). Integrated manufacturing—the state of the art. The Production Engineer, 59, 41–44.Google Scholar
  22. Davenport, T. H., De Long, D. W., & Beers, M. C. (1998). Successful knowledge management projects. Sloan Management Review, 39(2), 43–57.Google Scholar
  23. De Weck, O. L., Ross, A. M., & Rhodes, D. H. (2012). Investigating relationships and semantic sets amongst system lifecycle properties (Ilities). In Third International Engineering Systems Symposium CESUN 2012, 18–20 June 2012 (pp. 18–20), Delft University of Technology.Google Scholar
  24. Ding, Y., Shi, J., & Ceglarek, D. (2002). Diagnosability analysis of multi-station manufacturing processes. Journal of Dynamic Systems, Measurement, and Control, 124, 1–13.CrossRefGoogle Scholar
  25. Dingli, D. J. (2012). The Manufacturing Industry—Coping with Challenges (Working Paper No. 2012 / 05), Maastricht.Google Scholar
  26. Du, R., Elbestawi, M. A., & Wu, S. M. (1995). Automated monitoring of manufacturing processes, part 1: monitoring methods. Journal of Engineering for Industry, 117(2), 121. doi: 10.1115/1.2803286.CrossRefGoogle Scholar
  27. EC. (2009). Intelligent manufacturing systems—background. European Commission. Retrieved from:
  28. ElMaraghy, H. A. (2006). Flexible and reconfigurable manufacturing systems paradigms. International Journal of Flexible Manufacturing Systems, 17(4), 261–276. doi: 10.1007/s10696-006-9028-7.CrossRefzbMATHGoogle Scholar
  29. Elmaraghy, W., Elmaraghy, H., Tomiyama, T., & Monostori, L. (2012). Complexity in engineering design and manufacturing. CIRP Annals—Manufacturing Technology, 61, 793–814.CrossRefGoogle Scholar
  30. English, L. P. (1999). Improving data warehouse and business information quality. New York: Wiley.Google Scholar
  31. Eversheim, W. (1997). Prozeßorientiertes Qualitätscontrolling. Berlin: Springer.CrossRefGoogle Scholar
  32. Filos, E. (2013). Manufacturing innovation and horizon. G. L. Kovacs & D. Kochan (Eds.), New prolamat 2013, IFIP AICT 411, IFIP International Federation for Information Processing (2013), (pp. 165–175), October 2013, Dresden, Germany.Google Scholar
  33. Fink, A., Schneidereit, G., & Voß, S. (2005). Grundlagen der Wirtschaftsinforma-tik, 2 überarbeitete Auflage. Heidelberg: Physica-Verlag.Google Scholar
  34. Fowler, J. W. (2004). Grand challenges in modeling and simulation of complex manufacturing systems. Simulation, 80(9), 469–476. doi: 10.1177/0037549704044324.CrossRefGoogle Scholar
  35. Fritz, H., & Schulze, G. (2006). Fertigungstechnik. 7. neu bearbeitete Auflage. Berlin, Heidelberg: Springer.Google Scholar
  36. Garetti, M. & Terzi, S. (2004). Product lifecycle management: Definition, trends and open issues. In Proceedings at the 3rd International Conference on Advances in Production Engineering, 17–19 June 2004, Warsaw, Poland.Google Scholar
  37. Garvin, D. A. (1984). What does “product quality” really mean? MIT Sloan Management Review, 26(1), 25–43.Google Scholar
  38. Ge, Z., Gao, F., & Song, Z. (2011). Batch process monitoring based on support vector data description method. Journal of Process Control, 21(6), 949–959. doi: 10.1016/j.jprocont.2011.02.004.CrossRefGoogle Scholar
  39. Ge, Z., Song, Z., & Gao, F. (2013). Review of recent research on data-based process monitoring. Industrial and Engineering Chemistry Research, 2013(52), 3543–3562. doi: 10.1021/ie302069q.Google Scholar
  40. Giffin, M., de Weck, O., Bounova, G., Keller, R., Eckert, C., & Clarkson, P. J. (2009). Change propagation analysis in complex technical systems. Journal of Mechanical Design, 131(8), 1–14. doi: 10.1115/1.3149847.CrossRefGoogle Scholar
  41. Gordon, J., & Sohal, A. S. (2001). Assessing manufacturing plant competitiveness. International Journal of Operations and Production Management, 21(1/2), 233–253.CrossRefGoogle Scholar
  42. Grote, K.-H., & Feldhusen, J. (2007). Dubbel Taschenbuch für den Maschinenbau, Zweiundzwanzigste, neubearbeitete und erweiterte Auflage. Berlin, Heidelberg, New York: Springer.Google Scholar
  43. Gunasekaran, A., & Ngai, E. W. (2004). Information systems in supply chain integration and management. European Journal of Operational Research, 159(2), 269–295. doi: 10.1016/j.ejor.2003.08.016.CrossRefzbMATHMathSciNetGoogle Scholar
  44. Gutenberg, E. (1970). Grundlagen der Betriebswirtschaftslehre, Band 1: Die Produktion. 24. Auflage. Berlin, Heidelberg: Springer.Google Scholar
  45. Harding, J. A., Shahbaz, M., Srinivas, & Kusiak, A. (2006). Data mining in manufacturing: A review. Journal of Manufacturing Science and Engineering, 128(4), 969. doi: 10.1115/1.2194554.CrossRefGoogle Scholar
  46. Hatvany, J. (1983). The efficient use of deficient information. CIRP Annals, 32(1), 423–425.CrossRefGoogle Scholar
  47. Hatvany, J., & Nemes, L. (1978). Intelligent manufacturing systems—a tentative forecast, In A link between science and applications of automatic control, Proceedings of the VIIth IFAC World Congress (Vol. 2, pp. 895–899), Helsinki, Finland.Google Scholar
  48. Haun, M. (2002). Handbook Knowledge Management. Basics and Realization, Systems and Praxis Examples. (original German title: Handbuch Wissensmanagement. Grundlagen und Umsetzung, Systeme und Praxisbeispiele). Berlin: Springer.Google Scholar
  49. He, N., Zhang, D. Z., & Li, Q. (2013). Agent-based hierarchical production planning and scheduling in make-to-order manufacturing system. International Journal of Production Economics. doi: 10.1016/j.ijpe.2013.08.022.
  50. Helfert, M. (2002). Planung und Messung der Datenqualität in Data-Warehouse-Systemen. Dissertation, Universität St. Gallen.Google Scholar
  51. Hicks, B. J. (2007). Lean information management: Understanding and eliminating waste. International Journal of Information Management, 27(4), 233–249. doi: 10.1016/j.ijinfomgt.2006.12.001.CrossRefGoogle Scholar
  52. Hicks, B. J., Culley, S. J., & McMahon, C. (2006). A study of issues relating to information management across engineering SMEs. International Journal of Information Management, 26(4), 267–289. doi: 10.1016/j.ijinfomgt.2006.03.006.CrossRefGoogle Scholar
  53. Hoffmann, M., Goesmann, T., & Kienle, A. (2002a). Analyse und Unterstützung von Wissensprozessen als Voraussetzung für erfolgreiches Wissensmanagement. In A. Abecker, K. Hinkelmann, H. Maus, & H. J. Müller (Eds.), Geschäftsprozessorientiertes Wissensmanagement (pp. 159–181). Berlin: Springer.CrossRefGoogle Scholar
  54. Hoffmann, F., Keßler, O., Lübben, Th, & Mayr, P. (2002b). Distortion engineering—verzugsbeherrschung in der fertigung. HTM, 57(3), 213–217.Google Scholar
  55. Hoke, G. E. J. (2011). Shoring up information governance with GARP. Information Management Journal, 45(1), 26–31.Google Scholar
  56. Höpf, M., & Schaeffer, C. F. (1997). Holonic manufacturing systems. In J. Goossenaerts, F. Kimura, & H. Wortmann (Eds.), Information infrastructure systems for manufacturing ifip—the international federation for information processing (pp. 431–438), Springer. doi: 10.1007/978-0-387-35063-9_37.
  57. Hutton, J., & Denham, J. (2008). Manufacturing: New challenges, new opportunities (p. 64), London.Google Scholar
  58. Jacob, J., & Petrick, K. (2007). Qualitätsmanagement und Normung. In R. Schmitt & T. Pfeifer (Eds.), Masing Handbuch Qualitätsmanagement (pp. 101–121). München: Carl Hanser Verlag.Google Scholar
  59. Jansen-Vullers, M. H., van Drop, C. A., & Beulens, A. J. M. (2003). Managing traceability information in manufacture. International Journal of Information Management, 23(2003), 395–413.CrossRefGoogle Scholar
  60. Jarke, M., Jeusfeld, M., Quix, C., & Vassilidis, P. (1999). Architecture and quality in data ware- houses: An extended repository approach. Information Systems, 3(24), 229–253.CrossRefGoogle Scholar
  61. Jehle, E. (1999). Produktionswirtschaft. Heidelberg: Verlag Recht und Wirtschaft.Google Scholar
  62. Jenab, K., & Ahi, P. (2010). Fuzzy quality feature monitoring model. International Journal of Production Research, 48(17), 5021–5030. doi: 10.1080/00207540903117907.CrossRefzbMATHGoogle Scholar
  63. Jiang, P., Jia, F., Wang, Y., & Zheng, M. (2012). Real-time quality monitoring and predicting model based on error propagation networks for multistage machining processes. Journal of Intelligent Manufacturing, (2012). doi: 10.1007/s10845-012-0703-0.
  64. Jun, H.-B., Kiritsis, D., & Xirouchakis, P. (2007). Research issues on closed-loop PLM. Computers in Industry, 58(8–9), 855–868. doi: 10.1016/j.compind.2007.04.001.CrossRefGoogle Scholar
  65. Kaiser, M. J. (1998). Generalized zone separation functionals for convex perfect forms and incomplete data sets. International Journal of Machine Tools and Manufacture, 38(4), 375–404. doi: 10.1016/S0890-6955(97)00042-4.CrossRefGoogle Scholar
  66. Kamiske, G., & Brauer, J. (2008). Qualitätsmanagements von A bis Z. 6., Auflage. München: Carl Hanser-Verlag.Google Scholar
  67. Kang, B. S., Choe, D. H., & Park, S. C. (1999). Intelligent process control in manufacturing industry with sequential processes. International Journal of Production Economics, 60–61, 583–590. doi: 10.1016/S0925-5273(98)00178-9.CrossRefGoogle Scholar
  68. Kano, M., & Nakagawa, Y. (2008). Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. Computers and Chemical Engineering, 32(1–2), 12–24. doi: 10.1016/j.compchemeng.2007.07.005.CrossRefGoogle Scholar
  69. Kimemia, J. G., & Gershwin, S. B. (1981). An algorithm for the computer control of production in a flexible manufacturing system. In 20th IEEE Conference on Decision and Control including the Symposium on Adaptive Processes, 1981 (Vol. 20, pp. 628–633). doi: 10.1109/CDC.1981.269285.
  70. Klein, D., Thoben, K.-D. & Nowak, L. (2005). Using Indicators to Describe Distortion Along a Process Chain. In H.-W. Zoch & T. Lübben (Eds.), Proceedings 1st International Conference on Distortion Engineering, 14–16.09.2005 in Bremen (pp. 31–36), Germany.Google Scholar
  71. Köksal, G., Batmaz, İ., & Testik, M. C. (2011). A review of data mining applications for quality improvement in manufacturing industry. Expert Systems with Applications, 38(10), 13448–13467. doi: 10.1016/j.eswa.2011.04.063.CrossRefGoogle Scholar
  72. König, W., & Klocke, F. (2008). Fertigungsverfahren Drehen, Fräsen, Bohren 8., neu bearbeitete Auflage. Berlin, Heidelberg: Springer.Google Scholar
  73. Kopacek, P. (1999). Intelligent manufacturing: Present state and future trends. Journal of Intelligent and Robotic Systems, 26, 217–229.CrossRefGoogle Scholar
  74. Koren, Y., Hu, S. J., & Weber, T. W. (1998). Impact of manufacturing system configuration on performance. Annals of the CIRP, 47(1), 369–372.CrossRefGoogle Scholar
  75. Korndörfer, W. (2003). Allgemeine Betriebswirtschaftslehre. Wiesbaden: Gabler Verlag.Google Scholar
  76. Kotler, P., Armstrong, G., Saunders, J., & Wong, V. (2011). Grundlagen des Marketing (5th ed.). München: Pearson Studium.Google Scholar
  77. Kreutzberg, J. (2000). Qualitätsmanagement auf dem Prüfstand, Analyse des Qualitätsmanagements von Informationssystemen. Dissertation, University of Zurich, Zurich, Switzerland.Google Scholar
  78. Küll, U. (2013). Im Rausch der Geschwindigkeit: Big Data und Echtzeitanalysen revolutionieren Business Intelligence. Retrieved May 22, 2013 from:
  79. Kumar, S. (2002). Intelligent manufacturing systems (pp. 1–20), Ranchi. Retrieved from
  80. Lee, J.-M., Yoo, C., & Lee, I.-B. (2004). Statistical process monitoring with independent component analysis. Journal of Process Control, 14(5), 467–485. doi: 10.1016/j.jprocont.2003.09.004.CrossRefGoogle Scholar
  81. Liu, X., Zhang, W. J., & Venuvinod, P. K. (1997). Intelligent manufacturing systems in global manufacturing paradigm: A critical review and new research issues. In CIRP International Symposium—Advanced Design and Manufacture in the Global Manufacturing Era, August 21–22, 1997, Hong Kong.Google Scholar
  82. Lödding, H. (2013). Handbook of manufacturing control—fundamentals, description, configuration. Heidelberg, New York: Springer.CrossRefGoogle Scholar
  83. Lohr, S. (2012). The age of big data. New York Times, February 11, 2012.Google Scholar
  84. Lu, S. C.-Y., & Suh, N.-P. (2009). Complexity in design of technical systems. CIRP Annals—Manufacturing Technology, 58(1), 157–160. doi: 10.1016/j.cirp.2009.03.067.CrossRefGoogle Scholar
  85. Lutz, M., Boucher, X., & Roustant, O. (2012). Information technologies capacity planning in manufacturing systems: Proposition for a modelling process and application in the semiconductor industry. Computers in Industry, 63(7), 659–668. doi: 10.1016/j.compind.2012.03.003.CrossRefGoogle Scholar
  86. Maddern, H., Smart, P. A., Maull, R. S., & Childe, S. (2013). End-to-end process management: implications for theory and practice. Production Planning and Control, 1–19. doi: 10.1080/09537287.2013.832821.
  87. Magee, C. L., & de Weck, O. L. (2004). Complex system classification. In Fourteenth Annual International Symposium of the International Council on Systems Engineering (INCOSE), June 20–24, 2004. Toulouse, France.Google Scholar
  88. Masing, J. (2007). Handbuch Qualität: Grundlagen und Elemente des Qualitätsmanagement: Systeme-Perspektiven. München: Carl Hanser Verlag.Google Scholar
  89. Mazumder, J. (2008). Intelligent manufacturing: Role of lasers and optics. LIA today, p. 6. Google Scholar
  90. McFarlane, D. C., & Bussmann, S. (2003). Holonic manufacturing control: Rationales, developments and open issues. In S. M. Deen (Ed.), Agent-Based manufacturing, advances in the holonic approach (pp. 303–326). Berlin, Heidelberg: Springer. doi: 10.1007/978-3-662-05624-0_13.
  91. McFarlane, D., Sarma, S., Chirn, J. L., Wong, C., & Ashton, K. (2003). Auto ID systems and intelligent manufacturing control. Engineering Applications of Artificial Intelligence, 16(4), 365–376. doi: 10.1016/S0952-1976(03)00077-0.CrossRefGoogle Scholar
  92. Mekid, S., Pruschek, P., & Hernandez, J. (2009). Beyond intelligent manufacturing: New generation of flexible intelligent NC machines. Mechanism and Machine Theory, 44(1), 466–476.CrossRefzbMATHGoogle Scholar
  93. Merali, Y., & Bennet, Z. (2011). Web 2.0 and Network Intelligence. In P. Warren, J. Davies, & E. Simperl (Eds.), Context and semantics for knowledge management (pp. 11–26). Heidelberg: Springer.CrossRefGoogle Scholar
  94. Mertins, K., & Seidel, H. (2009). Wissensmanagement im Mittelstand. Grundlagen—Lšsungen—Praxisbeispiele. Berlin: Springer.CrossRefGoogle Scholar
  95. Mohanty, P. P. (2004). An agent-oriented approach to resolve the production planning complexities for a modern steel manufacturing system. The International Journal of Advanced Manufacturing Technology, 24(3–4), 199–205. doi: 10.1007/s00170-003-1673-3.Google Scholar
  96. Monostori, L. (2002). AI and machine learning techniques for managing complexity, changes and uncertainties in manufacturing. In 15th Triennial World Congress (p. 12), Barcelona, Spain.Google Scholar
  97. Morris, B., & Johnston, R. (1987). Dealing with inherent variability: The difference between manufacturing and service? International Journal of Operations and Production Management, 7(4), 13–22. doi: 10.1108/eb054796.CrossRefGoogle Scholar
  98. Nagy, D., Jering, D., Strasser, T., Martel, A., Garello, P., Filios, E. (Eds.), (2005). Intelligent manufacturing systems—impact report (p. 48), Washington, D.C. Retrieved from
  99. Naumann, F. (2007). Datenqualität Informatik-Spektrum, 30(1), 27–31. doi: 10.1007/s00287-006-0125-5.CrossRefMathSciNetGoogle Scholar
  100. Nonaka, I., & Takeuchi, H. (1997). Die Organisation des Wissens—Wie japanische Unternehmen eine brachliegende Ressource nutzbar machen (p. 299). Frankfurt/New York: Campus Verlag.Google Scholar
  101. North, K., & Güldenberg, S. (2008). Produktive Wissensarbeit(er)—Antworten auf die Managementherausforderungen des 21. Jahrhunderts. Wiesbaden: Gabler Verlag.Google Scholar
  102. Olbertz, J.-H. & Otto, H.-U. (Eds.), (2001). Qualität von Bildung. Vier Perspektiven (Arbeitsberichte 2’01). Hrsg. von HoF Wittenberg—Institut für Hochschulforschung an der Martin-Luther Universität Halle-Wittenberg. Wittenberg, (127). ISBN 3-9806701-4-7. ISSN 1436-3550.Google Scholar
  103. Oztemel, E. (2010). Intelligent manufacturing systems. In L. Benyoucef & B. Grabot (Eds.), Artificial intelligence techniques for networked manufacturing enterprises management (pp. 1–39). London, Dordrecht, Heidelberg, New York: Springer. doi: 10.1007/978-1-84996-119-6.
  104. Peng, Y. (2004). Intelligent condition monitoring using fuzzy inductive learning. Journal of Intelligent Manufacturing, 2004(15), 373–380.CrossRefGoogle Scholar
  105. Piddington, C., & Pegram, M. (1993). An IMS test case—global manufacturing. In: Proceedings of the IFIP TC5/WG5.7 5th International Conference on Advances in Production management Systems, 28–30 September, 1993, Athens, Greece.Google Scholar
  106. Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data quality assessment. Communications of the ACM, 45(4), 211. doi: 10.1145/505248.506010.CrossRefGoogle Scholar
  107. Polanyi, M. (1962). Personal knowledge. Towards a post-critical philosophy. London: Routledge and Kegan Paul Ltd.Google Scholar
  108. Porter, M. E. (2008). On competition. Boston: Harvard Business School Publishing.Google Scholar
  109. Probst, G. J. B., Raub, S., & Romhardt, K. (2006). Wissen managen (p. 307). Wiesbaden: Gabler. doi: 10.1007/978-3-8349-9343-4.
  110. Qin, S. J., Cherry, G., Good, R., Wang, J., & Harrison, C. A. (2006). Semiconductor manufacturing process control and monitoring: A fab-wide framework. Journal of Process Control, 16(3), 179–191. doi: 10.1016/j.jprocont.2005.06.002.CrossRefGoogle Scholar
  111. Revilla, J., & Cadena, M. (2008). Trends in intelligent manufacturing systems. In Proceedings of the World Congress on Engineering (pp. 1257–1262), London, UK.Google Scholar
  112. Ribeiro, B. (2005). Support vector machines for quality monitoring in a plastic injection molding process. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 35(3), 401–410. doi: 10.1109/TSMCC.2004.843228.CrossRefGoogle Scholar
  113. Rohweder, J. P., Kasten, G., Malzahn, D., Piro, A. & Schmid, J. (2011). Informationsqualität—Definitionen, Dimensionen und Begriffe. In K. Hildebrand, M. Gebauer, H. Hinrichs, & M. Mielke (Eds.), Daten- und Informationsqualität. (pp. 25–45). Wiesbaden: Vieweg+Teubner. doi: 10.1007/978-3-8348-9953-8.
  114. Schmachtenberg, E. (2000). Vom Material zum Produkt—Der Prozess der Werkstoffop- timierung. In Essener Unikate 13/2000 S (pp. 112–121), Heine, Essen.Google Scholar
  115. Seifert, M. (2007). Unterstützung der Konsortialbildung in Virtuellen Organisationen durch prospektives Performance Measurement. Dissertation, Universität Bremen. Bremen, Germany.Google Scholar
  116. Shen, W., Hao, Q., Yoon, H., & Norrie, D. (2006). Applications of agent-based systems in intelligent manufacturing: An update review. Advanced Engineering Informatics, 20(4), 415–431.
  117. Shiang, L. E., & Nagaraj, S. (2011). Impediments to innovation: Evidence from malaysian manufacturing firms. Asia Pacific Business Review, 17(2), 209–223.CrossRefGoogle Scholar
  118. Sitek, P. (2012). Quality management to support single companies in colloborative enterprise networks. Dissertation, University of Bremen, Bremen, Germany.Google Scholar
  119. Sitek, P., Seifert, M., & Thoben, K.-D. (2010). Towards an inter-organisational perspective for managing quality in virtual organisations. International Journal of Quality and Reliability Management, 27(2), 231–246. doi: 10.1108/02656711011014339.CrossRefGoogle Scholar
  120. Skitt, P. J. C., Javed, M. A., Sanders, S. A., & Higginson, A. M. (1993). Process monitoring using auto-associative, feed-forward artificial neural networks. Journal of Intelligent Manufacturing, 1993(4), 79–94.CrossRefGoogle Scholar
  121. Sölter, J. (2010). Ursachen und Wirkmechanismen der Entstehung von Verzug infolge spanender Bearbeitung. Dissertation, Universität Bremen, Aachen: Shaker Verlag.Google Scholar
  122. Spoerre, J., & Ben Wang, H.-P. (1995). Machine performance monitoring and fault classification using an exponentially weighted moving average scheme. International Journal of Production Research, 33(2), 445–463.CrossRefzbMATHGoogle Scholar
  123. Stavropoulos, P., Chantzis, D., Doukas, C., Papacharalampopoulos, A., & Chryssolouris, G. (2013). Monitoring and control of manufacturing processes: A review. Procedia CIRP, 8, 421–425. doi: 10.1016/j.procir.2013.06.127.CrossRefGoogle Scholar
  124. Steven, M. (2007). Handbuch produktion, theorie-management-logistik-controlling. Stuttgart: Kohlhammer-Verlag.Google Scholar
  125. Storey, V. C., Dewan, R. M., & Freimer, M. (2012). Data quality: Setting organizational policies. Decision Support Systems, 54(1), 434–442. doi: 10.1016/j.dss.2012.06.004.CrossRefGoogle Scholar
  126. Suh, N. P. (2005). Complexity in engineering. CIRP Annals—Manufacturing Technology, 54(2), 46–63. doi: 10.1016/S0007-8506(07)60019-5.CrossRefGoogle Scholar
  127. Taguchi, G. (1989). Introduction to quality engineering (p. 263). New York: Kraus International Publications.Google Scholar
  128. Taisch, M., Cammarino, B. P., & Cassina, J. (2011). Life cycle data management: First step towards a new product lifecycle management standard. International Journal of Computer Integrated Manufacturing, 24(12), 1117–1135. doi: 10.1080/0951192X.2011.608719.CrossRefGoogle Scholar
  129. Terzi, S., Panetto, H., Morel, G., & Garetti, M. (2007). A holonic metamodel for product traceabily in PLM. International Journal of Product Lifecycle Management, 2(3), 253–289. doi: 10.1504/IJPLM.2007.016292.CrossRefGoogle Scholar
  130. Thomas, A. J., Byard, P., & Evans, R. (2012). Identifying the UK’s manufacturing challenges as a benchmark for future growth. Journal of Manufacturing Technology Management, 23(2), 142–156. doi: 10.1108/17410381211202160.CrossRefGoogle Scholar
  131. Tönshoff, H. K., Wulsberg, J. P., Kals, H. J. J., König, W., & Van Luttervelt, C. A. (1988). Developments and trends in monitoring and control of machining processes. CIRP Annals, 37(2), 611–622.CrossRefGoogle Scholar
  132. Universität Bremen. (2007). Promotionsordnung der Universität Bremen für die mathematischen, natur- und ingenieurwissenschaftlichen Fachbereiche vom 14. März 2007. Retrieved August 13, 2013, from
  133. van Luttervelt, C. A., Childs, T. H. C., Jawahir, I. S., Klocke, F., & Venuvinod, P. K. (1998). Present situation and future trends in modelling of machining operations. Annals of the CIRP, 47(2), 587–626.CrossRefGoogle Scholar
  134. Verma, R. (2012). Data quality and clinical audit. Anaesthesia and intensive care medicine, 13(8), 397–399. doi: 10.1016/j.mpaic.2012.05.009.CrossRefGoogle Scholar
  135. Viharos, Z. J., & Monostori, L. (1999). Intelligent, quality-oriented supervisory control of manufacturing processes and process chains. In DYCOMANS Workshop, 12–14 May, 1999 (pp. 129–134), Bled-Slovenia.Google Scholar
  136. Viharos, Z., Monostori, L., & Vincze, T. (2002). Training and application of artificial neural networks with incomplete data. In Lecture Notes of Artificial Intelligence, LNAI 2358, The Fifteenth International Conference on Industrial and Engineering Application of Artificial Intelligence and Expert Systems, 17–20 June 2002 (pp. 649–659). Cairns, Berlin, Heidelberg, Australia: Springer.Google Scholar
  137. von Bertalanffy, L. (1972). The history and status of general systems theory. Academy of Management Journal, 15(4), 407–426.CrossRefGoogle Scholar
  138. Wallace, E., & Riddick, F. (2013). Panel on enabling smart manufacturing (presentation). In APMS 2013, September 11, 2013, State College, USA.Google Scholar
  139. Wang, R. Y., & Strong, D. (1996). Beyond accuracy: What data quality means to data consumers. Journal of Management Information Systems, 4(12), 5–33.Google Scholar
  140. Westkämper, E., & Warnecke, H. (2010). Einführung in die Fertigungstechnik (8th ed.). Wiesbaden: Vieweg+Teubner-Verlag.CrossRefGoogle Scholar
  141. Widodo, A., & Yang, B.-S. (2007). Support vector machine in machine condition monitoring and fault diagnosis. Mechanical Systems and Signal Processing, 21(6), 2560–2574. doi: 10.1016/j.ymssp.2006.12.007.CrossRefGoogle Scholar
  142. Wiendahl, H.-P., & Scholtissek, P. (1994). Management and control of complexity in manufacturing. CIRP Annals, 43(2), 533–540.CrossRefGoogle Scholar
  143. Wiig, K. M. (1998). Perspectives on introducing enterprise knowledge management. In Proceedings of the 2nd International Conference on Practical Aspects of Knowledge Management (PAKM98), 29–30 October 1998, Basel, Switzerland.Google Scholar
  144. Winkler, W. E. (2004). Methods for evaluating and creating data quality. Information Systems, 29(7), 531–550. doi: 10.1016/ Scholar
  145. Wuest, T., & Thoben, K.-D. (2012). Exploitation of material property potentials to reduce rare raw material waste—a product state based concept for manufacturing process improvement. Journal of Mining World Express (MWE), 1(1), 13–20.Google Scholar
  146. Wuest, T., Irgens, C., & Thoben, K.-D. (2012). Analysis of manufacturing process sequences, using machine learning on intermediate product states (as process proxy data). In C. Emmanouilidis, M. Taisch, & D. Kiritsis (Eds.), APMS 2012, Part II, IFIP AICT 398 (pp. 1–8). Heidelberg, Berlin: Springer.Google Scholar
  147. Wuest, T., Irgens, C., & Thoben, K.-D. (2013). An approach to monitoring quality in manufacturing using supervised machine learning on product state data. Journal of Intelligent Manufacturing, 25(5), 1167–1180.CrossRefGoogle Scholar
  148. Wuest, T., Tinscher, R., Porzel, R., & Thoben, K.-D. (2014). Experimental research data quality in materials science. International Journal of Advanced Information Technology, 4(6), 1–18.CrossRefGoogle Scholar
  149. Yul, T. & Wang, G. (2009). The process quality control of single-piece and small-batch products in advanced manufacturing environment. In 16th International Conference on Industrial Engineering and Engineering Management, 2009. IE&EM ’09 (pp. 306–310), Beijing.Google Scholar
  150. Zantek, P. F., Wright, G. P., & Plante, R. D. (2006). A self-starting procedure for monitoring process quality in multistage manufacturing systems. IIE Transactions, 38(4), 293–308. doi: 10.1080/07408170500208354.CrossRefGoogle Scholar
  151. Zingel, H. (2009). Qualitätsmanagement und die ISO 9000er Normenfamilie. Online-resource: Retrieved August 3, 2011, from
  152. Zobel, R., & Filos, E. (2006). Technology management with a global perspective: The case of IMS. In PICMET’06 Proceedings, 9–13 July 2006 (pp. 9–13), Istanbul, Turkey.Google Scholar
  153. Zoch, H.-W. (2009). Distortion engineering: Vision or ready to application. Mat.-wiss. u. Werkstofftech, 40(5–6), 342–348.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ICT Applications for ProductionBIBA—Bremer Institut für Produktion und Logistik GmbHBremenGermany
  2. 2.Department of Production EngineeringUniversity of BremenBremenGermany

Personalised recommendations