• Thorsten WuestEmail author
Part of the Springer Theses book series (Springer Theses)


One way to improve manufacturing processes is to look at the data and information involved and how this information is put to use (Hicks et al. 2006). As stated by Albinoet al. (2002), the successful coordination of a manufacturing process is mostly based on a successful handling of information to support process management and other tasks involved. With today’s advanced ICT it becomes possible to process, transfer and store large amounts of data and information for a reasonable price (Krcmar 2005). But too much information can be a threat for improved process quality as it can e.g., distract from the main issues/causalities or lead to delayed or wrong conclusions about appropriate actions (Lang 2007). Jansen-Vullers et al. (2003) emphasize the importance of the availability of the right information for quality during manufacturing processes. Hence the question is: What is the right and relevant information in the case of distributed manufacturing process chains and high tech industrial products?


Product Lifecycle Management Product Data Management Improve Process Quality Stressed Product Holistic Concept 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Albino, V., Pontrandolfo, P., & Scozzi, B. (2002). Analysis of information flows to enhance the coordination of production processes. International Journal of Production Economics, 75(2002), 7–19.CrossRefGoogle Scholar
  2. Brinksmeier, E. (1991). Prozeß-und Werkstückqualität in der Feinbearbeitung. Fortschritt-Berichte VDI, Reihe 2: Fertigungstechnik (p. 256). Düsseldorf: VDI-Verlag.Google Scholar
  3. Buhr, A., Graf, W., Power, L. M. & Amthauer, K. (2005). Almatis global product concept for the refractory industry. Retrieved September 27, 2008, from
  4. Cassina, J., Cannata, A. & Taisch, M. (2009). Development of an extended product lifecycle management through service oriented architecture. In Proceedings of the 1st CIRP Industrial Product-Service Systems (IPS2) Conference (pp. 118–124). Cranfield.Google Scholar
  5. Choudhary, A. K., Harding, J. A., & Tiwari, M. K. (2009). Data mining in manufacturing: a review based on the kind of knowledge. Journal of Intelligent Manufacturing, 20(5), 501–521. doi: 10.1007/s10845-008-0145-x.CrossRefGoogle Scholar
  6. Deja, M., & Siemiatkowski, M. S. (2012). Feature-based generation of machining process plans for optimised parts manufacture. Journal of Intelligent Manufacturing. doi: 10.1007/s10845-012-0633-x.
  7. Denton, B., Gupta, D., & Jawahir, K. (2003). Managing increasing product variety at integrated steel mills. Interfaces, 33(2), 41–53.CrossRefGoogle Scholar
  8. Devadason, F. J., & Lingam, P. P. (1997). A methodology for indentification of information needs of users. IFLA Journal, 23(1), 41–51.CrossRefGoogle Scholar
  9. Ellram, L., & Krause, D. (1994). Supplier partnerships in manufacturing versus non-manufacturing firms. International Journal of Logistics, 5(1), 43–53.CrossRefGoogle Scholar
  10. Enderwick, P. (2005). Globalization and Labor. New York: Chelsea House Publications.Google Scholar
  11. Frey, C. (2007). Rohstoffe als Beitrag zur Portfoliooptimierung. München: GRIN Verlag.Google Scholar
  12. Garvin, D. A. (1984). What does “product quality” really mean? MIT Sloan Management Review, 26(1), 25–43.Google Scholar
  13. Hamel, C. K., & Prahalad, G. (1990). The core competence of the corporation. Harvard Business Review, 61(3), 275–292.Google Scholar
  14. Hicks, B. J., Culley, S. J., & McMahon, C. A. (2006). A study of issues relating to information management across engineering SMEs. International Journal of Information Management, 26(4), 267–289. doi: 10.1016/j.ijinfomgt.2006.03.006.CrossRefGoogle Scholar
  15. Jacob, J., & Petrick, K. (2007). Qualitätsmanagement und Normung. In R. Schmitt & T. Pfeifer (Eds.), Masing Handbuch Qualitätsmanagement (pp. 101–121). München: Carl Hanser Verlag.Google Scholar
  16. Jansen-Vullers, M. H., van Drop, C. A., & Beulens, A. J. M. (2003). Managing traceability information in manufacture. International Journal of Information Management, 23(2003), 395–413.CrossRefGoogle Scholar
  17. Kalpakjian, S., & Schmid, S. R. (2009). Manufacturing engineering and technology. Englewood Cliffs: Prentice Hall.Google Scholar
  18. Kano, M., & Nakagawa, Y. (2008). Data-based process monitoring, process control, and quality improvement: Recent developments and applications in steel industry. Computers and Chemical Engineering, 32(1–2), 12–24. doi: 10.1016/j.compchemeng.2007.07.005.CrossRefGoogle Scholar
  19. Kovačič, M., & Šarler, B. (2009). Application of the genetic programming for increasing the soft annealing productivity in steel industry. Materials and Manufacturing Processes, 24(3), 369–374. doi: 10.1080/10426910802679634.CrossRefGoogle Scholar
  20. Köksal, G., Batmaz, İ., & Testik, M. C. (2011). A review of data mining applications for quality improvement in manufacturing industry. Expert Systems with Applications, 38(10), 13448–13467. doi: 10.1016/j.eswa.2011.04.063.CrossRefGoogle Scholar
  21. Krcmar, H. (2005). Informationsmanagement. Berlin, Heidelberg, New York: Springer.Google Scholar
  22. Kreutzberg, J. (2000). Qualitätsmanagement auf dem Prüfstand, Analyse des Qualitätsmanagements von Informationssystemen. Dissertation, University of Zurich, Zurich, Switzerland.Google Scholar
  23. Kumar, S. (2002). Intelligent Manufacturing Systems (pp. 1–20). Ranchi. Retrieved from
  24. Lang, S. (2007). Durchgängige Mitarbeiterinformation zur Steigerung von Effizienz und Prozesssicherheit in der Produktion. Dissertation, Universität Erlangen-Nürnberg, Bamberg: Meisenbach Verlag.Google Scholar
  25. Lange, K. M. (2007). Duden Wirtschaft von A bis Z: Grundlagenwissen für Schule und Studium, Beruf und Alltag (Gebundene Ausgabe). Mannheim: Bibliographisches Institut.Google Scholar
  26. Levitt, T. (1993). The globalization of markets. Harvard Business Review, May-June, 92–102.Google Scholar
  27. Linß, G. (2002). Qualitätsmanagement für Ingenieure. München/Wien: Hanser Verlag.Google Scholar
  28. Löhr-Richter, P. (1993). Zur Diskussion: Methodologie - Methodik—Methode. Was steckt dahinter? Gesellschaft für Informatik e.V. - Lecture Notes in Informatics, 1(1993), 39–41.Google Scholar
  29. Maull, H. W. (1988). Strategische Rohstoffe—Risiken für die Wirtschaftliche Si-cherheit des Westens. München: Oldenbourg Verlag.Google Scholar
  30. Mohanty, P. P. (2004). An agent-oriented approach to resolve the production planning complexities for a modern steel manufacturing system. The International Journal of Advanced Manufacturing Technology, 24(3–4), 199–205. doi: 10.1007/s00170-003-1673-3.Google Scholar
  31. N.N., (2006). The problem with solid engineering. The Economist, 379(8478), 71–73.Google Scholar
  32. Porter, M. (1998). Competitive advantage: Creating and sustaining superior performance: With a new introduction. New York: The Free Press.Google Scholar
  33. Porter, M. E. (2008). On competition. Boston: Harvard Business School Publishing.Google Scholar
  34. Puzzanghera, J. (2013). Manufacturing shows surprising strength. Los Angeles Times, October 2, 2013, p. B4.Google Scholar
  35. Schiersch, A. (2009). Inefficiency in the German Mechanical Engineering Sector 1–29. Berlin. Retrieved from
  36. Sitek, P., Seifert, M., & Thoben, K.-D. (2010). Towards an inter-organisational perspective for managing quality in virtual organisations. International Journal of Quality and Reliability Management, 27(2), 231–246. doi: 10.1108/02656711011014339.CrossRefGoogle Scholar
  37. Specht, D., & Braunisch, D. (2008). Sekundärrohstofflogistik—Konzepte und Anwendungen. Zeitschrift für wirtschaftlichen Fabrikbetrieb, 103(12), 875–879.Google Scholar
  38. Terzi, S., Panetto, H., Morel, G., & Garetti, M. (2007). A holonic metamodel for product traceabily in PLM. International Journal of Product Lifecycle Management, 2(3), 253–289. doi: 10.1504/IJPLM.2007.016292.CrossRefGoogle Scholar
  39. Thesing, G., Randow, J., Kirchfeld, A., Berberich, S., & Webb, A. (2010). New rules and old companies (how the mittelstand company approach in germany encourages and benefits from a strong sense of social responsibility). Bloomberg Businessweek, 4198, 72–75.Google Scholar
  40. Thomas, A. J., Byard, P., & Evans, R. (2012). Identifying the UK’s manufacturing challenges as a benchmark for future growth. Journal of Manufacturing Technology Management, 23(2), 142–156. doi: 10.1108/17410381211202160.CrossRefGoogle Scholar
  41. Tönshoff, H. K., & Denkena, B. (2013). Basics of cutting and abrasive processes. Berlin, Heidelberg: Springer. doi: 10.1007/978-3-642-33257-9.CrossRefGoogle Scholar
  42. Tilson, H. A. (1998). Developmental neurotoxicology of endocrine disruptors and pesticides: identification of information gaps and research needs. Environmental Health Perspective, 3(106), 807–811.CrossRefGoogle Scholar
  43. Universität Bremen. (2007). Promotionsordnung der Universität Bremen für die mathematischen, natur- und ingenieurwissenschaftlichen Fachbereiche vom 14. März 2007. Retrieved August, 13 2013 from
  44. Wuest, T., Klein, D., & Thoben, K.-D. (2011). State of steel products in industrial production processes. Procedia Engineering, 10(2011), 2220–2225.CrossRefGoogle Scholar
  45. Wuest, T., & Thoben, K.-D. (2012). Exploitation of material property potentials to reduce rare raw material waste—a product state based concept for manufacturing process improvement. Journal of Mining World Express (MWE), 1(1), 13–20.Google Scholar
  46. Wuest, T., Knoke, B., & Thoben, K.-D. (2014). Applying graph theory and the product state concept in manufacturing. Procedia Technology, 15(2014), 349–358. doi: 10.1016/j.protcy.2014.09.089.CrossRefGoogle Scholar
  47. Yul, T. & Wang, G. (2009). The process quality control of single-piece and small-batch products in advanced manufacturing environment. In 16th International Conference on Industrial Engineering and Engineering Management, 2009. IE&EM ’09 (pp. 306–310). Beijing.Google Scholar
  48. Zoch, H.-W. & Lübben, Th. (2011). Verzugsbeherrschung—Systemorientierter Ansatz als wesentliche Voraussetzung für den Erfolg. Stahl Strukturen. In Bleck, W. (Ed.) (2011). Industrie-, Forschungs-, Mikro- und Bauteilstrukturen—Tagungsband zum 26. Aachener Stahlkolloquium, 19./20.05.2011, Verlagshaus Mainz, ISBN 3-86130-258-6.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of ICT Applications for ProductionBIBA—Bremer Institut für Produktion und Logistik GmbHBremenGermany
  2. 2.Department of Production EngineeringUniversity of BremenBremenGermany

Personalised recommendations