Skip to main content

Aseptic Failure in Total Knee Arthroplasty

  • Chapter
Total Knee Arthroplasty

Abstract

The burden of revision total knee arthroplasty is significant and is set to increase. Understanding why modern total knee arthroplasty (TKA) fails is imperative if we are to effectively address failure but also to improve outcomes and satisfaction for our patients. Most causes of failure are, to some degree, under the surgeon’s control. Infection remains the first cause of failure to exclude. Aseptic failure of TKA encompasses several mechanisms of failure, some of which are intrinsically linked, namely, loosening, instability and malalignment. Our definitions of mechanisms of failure are becoming more descriptive which will aid in the extraction of meaningful data from large datasets and registries, but as surgeons we have a responsibility to report this data accurately so as to optimize its analysis. The successful development of more resistant biomaterials and evolutions in TKA design has helped reduce rates of polyethylene wear and associated osteolysis, but the work to provide a “lifetime” TKA goes on. Meticulous and accurate surgery to result in a balanced, well-fixed TKA must remain the surgeon’s primary aim in the quest to reduce failure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ritter MA, Herbst SA, Keating EM, Faris PM, Meding JB (1994) Long-term survival analysis of a posterior cruciate-retaining total condylar total knee arthroplasty. Clin Orthop Relat Res 309:136–145

    PubMed  Google Scholar 

  2. Font-Rodriguez DE, Scuderi GR, Insall JN (1997) Survivorship of cemented total knee arthroplasty. Clin Orthop Relat Res 345:79–86

    PubMed  Google Scholar 

  3. Vessely MB, Whaley AL, Harmsen WS, Schleck CD, Berry DJ (2006) The Chitranjan Ranawat Award: long-term survivorship and failure modes of 1000 cemented condylar total knee arthroplasties. Clin Orthop Relat Res 452:28–34

    PubMed  Google Scholar 

  4. Weir DJ, Moran CG, Pinder IM (1996) Kinematic condylar total knee arthroplasty. 14-year survivorship analysis of 208 consecutive cases. J Bone Joint Surg Br 78:907–911

    CAS  PubMed  Google Scholar 

  5. Cram P, Lu X, Kates SL, Singh JA, Li Y, Wolf BR (2012) Total knee arthroplasty volume, utilization, and outcomes among medicare beneficiaries, 1991–2010. JAMA 308:1227–1236

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Ravi B, Croxford R, Reichmann WM, Losina E, Katz JN, Hawker GA (2012) The changing demographics of total joint arthroplasty recipients in the United States and Ontario from 2001 to 2007. Best Pract Res Clin Rheumatol 26:637–647

    PubMed  Google Scholar 

  7. Falbrede I, Widmer M, Kurtz S, Schneidmuller D, Dudda M, Roder C (2011) Utilization rates of lower extremity prostheses in Germany and Switzerland: a comparison of the years 2005–2008. Orthopade 40:793–801

    CAS  PubMed  Google Scholar 

  8. Kurtz SM, Ong KL, Lau E, Bozic KJ (2014) Impact of the economic downturn on total joint replacement demand in the United States: updated projections to 2021. J Bone Joint Surg Am 96:624–630

    PubMed  Google Scholar 

  9. Abdel MP, Morrey ME, Jensen MR, Morrey BF (2011) Increased long-term survival of posterior cruciate-retaining versus posterior cruciate-stabilizing total knee replacements. J Bone Joint Surg Am 93:2072–2078

    PubMed  Google Scholar 

  10. Kurtz SM, Ong KL, Schmier J, Mowat F, Saleh K, Dybvik E et al (2007) Future clinical and economic impact of revision total hip and knee arthroplasty. J Bone Joint Surg Am 89(Suppl 3):144–151

    PubMed  Google Scholar 

  11. Robertsson O, Ranstam J, Sundberg M, W-Dahl A, Lidgren L (2014) The Swedish Knee Arthroplasty Register: a review. Bone Joint Res [Internet] 3:217–222

    CAS  Google Scholar 

  12. Baker PN, Khaw FM, Kirk LMG, Esler CNA, Gregg PJ (2007) A randomised controlled trial of cemented versus cementless press-fit condylar total knee replacement: 15-year survival analysis. J Bone Joint Surg Br 89:1608–1614

    CAS  PubMed  Google Scholar 

  13. Robertsson O, Dunbar MJ, Knutson K, Lidgren L (2000) Past incidence and future demand for knee arthroplasty in Sweden: a report from the Swedish Knee Arthroplasty Register regarding the effect of past and future population changes on the number of arthroplasties performed. Acta Orthop Scand 71:376–380

    CAS  PubMed  Google Scholar 

  14. Bourne RB, Chesworth BM, Davis AM, Mahomed NN, Charron KDJ (2010) Patient satisfaction after total knee arthroplasty: who is satisfied and who is not? Clin Orthop Relat Res 468:57–63

    PubMed Central  PubMed  Google Scholar 

  15. Noble PC, Conditt MA, Cook KF, Mathis KB (2006) The John Insall Award: patient expectations affect satisfaction with total knee arthroplasty. Clin Orthop Relat Res 452:35–43

    PubMed  Google Scholar 

  16. Saleh KJ, Santos ER, Ghomrawi HM, Parvizi J, Mulhall KJ (2006) Socioeconomic issues and demographics of total knee arthroplasty revision. Clin Orthop Relat Res 446:15–21

    PubMed  Google Scholar 

  17. Baker P, Cowling P, Kurtz S, Jameson S, Gregg P, Deehan D (2012) Reason for revision influences early patient outcomes after aseptic knee revision. Clin Orthop Relat Res 470:2244–2252

    PubMed Central  PubMed  Google Scholar 

  18. Ong KL, Lau E, Suggs J, Kurtz SM, Manley MT (2010) Risk of subsequent revision after primary and revision total joint arthroplasty. Clin Orthop Relat Res 468:3070–3076

    PubMed Central  PubMed  Google Scholar 

  19. Moreland JR (1988) Mechanisms of failure in total knee arthroplasty. Clin Orthop Relat Res 226:49–64

    PubMed  Google Scholar 

  20. Fehring TK, Odum S, Griffin WL, Mason JB, Nadaud M (2001) Early failures in total knee arthroplasty. Clin Orthop Relat Res 392:315–318

    PubMed  Google Scholar 

  21. Bourne RB, Maloney WJ, Wright JG (2004) An AOA critical issue. The outcome of the outcomes movement. J Bone Joint Surg Am 86:633–640

    PubMed  Google Scholar 

  22. Maloney WJ (2002) An American implant registry: a clinical use trip wire. Orthopedics 25:923–924

    PubMed  Google Scholar 

  23. Maloney WJ (2001) National Joint Replacement Registries: has the time come? J Bone Joint Surg Am 83:1582–1585

    PubMed  Google Scholar 

  24. Lombardi AVJ, Berend KR, Adams JB (2014) Why knee replacements fail in 2013: patient, surgeon, or implant? Bone Joint J 96-B(11 Suppl A):101–104

    PubMed  Google Scholar 

  25. Schroer WC, Berend KR, Lombardi AV, Barnes CL, Bolognesi MP, Berend ME et al (2013) Why are total knees failing today? Etiology of total knee revision in 2010 and 2011. J Arthroplasty 28(8 Suppl):116–119

    PubMed  Google Scholar 

  26. Buechel FF, Pappas MJ (1990) Long-term survivorship analysis of cruciate-sparing versus cruciate-sacrificing knee prostheses using meniscal bearings. Clin Orthop Relat Res 260:162–169

    PubMed  Google Scholar 

  27. Jordan LR, Olivo JL, Voorhorst PE (1997) Survivorship analysis of cementless meniscal bearing total knee arthroplasty. Clin Orthop Relat Res 338:119–123

    PubMed  Google Scholar 

  28. Sorrells RB (1996) The rotating platform mobile bearing TKA. Orthopedics 19:793–796

    CAS  PubMed  Google Scholar 

  29. Ulivi M, Orlandini L, Meroni V, Consonni O, Sansone V (2014) Survivorship at minimum 10-year follow-up of a rotating-platform, mobile-bearing, posterior-stabilised total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc [Epub ahead of print]

    Google Scholar 

  30. Kim Y-H, Park J-W, Kim J-S, Kulkarni SS, Kim Y-H (2014) Long-term clinical outcomes and survivorship of press-fit condylar sigma fixed-bearing and mobile-bearing total knee prostheses in the same patients. J Bone Joint Surg Am 96:e168

    PubMed  Google Scholar 

  31. Sadoghi P, Liebensteiner M, Agreiter M, Leithner A, Bohler N, Labek G (2013) Revision surgery after total joint arthroplasty: a complication-based analysis using worldwide arthroplasty registers. J Arthroplasty 28:1329–1332

    PubMed  Google Scholar 

  32. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7–13

    PubMed  Google Scholar 

  33. Sharkey PF, Lichstein PM, Shen C, Tokarski AT, Parvizi J (2014) Why are total knee arthroplasties failing today–has anything changed after 10 years? J Arthroplasty 29:1774–1778

    PubMed  Google Scholar 

  34. Kurtz SM, Gawel HA, Patel JD (2011) History and systematic review of wear and osteolysis outcomes for first-generation highly crosslinked polyethylene. Clin Orthop Relat Res 469:2262–2277

    PubMed Central  PubMed  Google Scholar 

  35. Mulhall KJ, Ghomrawi HM, Scully S, Callaghan JJ, Saleh KJ (2006) Current etiologies and modes of failure in total knee arthroplasty revision. Clin Orthop Relat Res 446:45–50

    PubMed  Google Scholar 

  36. Hossain F, Patel S, Haddad FS (2010) Midterm assessment of causes and results of revision total knee arthroplasty. Clin Orthop Relat Res 468:1221–1228

    PubMed Central  PubMed  Google Scholar 

  37. Bozic KJ, Kurtz SM, Lau E, Ong K, Chiu V, Vail TP et al (2010) The epidemiology of revision total knee arthroplasty in the United States. Clin Orthop Relat Res 468:45–51

    PubMed Central  PubMed  Google Scholar 

  38. Parvizi J, Zmistowski B, Berbari EF, Bauer TW, Springer BD, Della Valle CJ et al (2011) New definition for periprosthetic joint infection: from the Workgroup of the Musculoskeletal Infection Society. Clin Orthop Relat Res 469:2992–2994

    PubMed Central  PubMed  Google Scholar 

  39. Djahani O, Rainer S, Pietsch M, Hofmann S (2013) Systematic analysis of painful total knee prosthesis, a diagnostic algorithm. Arch Bone Joint Surg 1:48–52

    Google Scholar 

  40. Vince KG (2014) The problem total knee replacement: systematic, comprehensive and efficient evaluation. Bone Joint J 96-B(11 Suppl A):105–111

    CAS  PubMed  Google Scholar 

  41. Claassen L, Ettinger M, Plaass C, Daniilidis K, Calliess T, Ezechieli M (2014) Diagnostic value of bone scintigraphy for aseptic loosening after total knee arthroplasty. Technol Health Care 22:767–773

    PubMed  Google Scholar 

  42. Smith SL, Wastie ML, Forster I (2001) Radionuclide bone scintigraphy in the detection of significant complications after total knee joint replacement. Clin Radiol 56:221–224

    CAS  PubMed  Google Scholar 

  43. Simonsen L, Buhl A, Oersnes T, Duus B (2007) White blood cell scintigraphy for differentiation of infection and aseptic loosening: a retrospective study of 76 painful hip prostheses. Acta Orthop 78:640–647

    PubMed  Google Scholar 

  44. Gratz S, Behr TM, Reize P, Pfestroff A, Kampen WU, Hoffken H (2009) (99m)Tc-Fab’ fragments (sulesomab) for imaging septically loosened total knee arthroplasty. J Int Med Res 37:54–67

    CAS  PubMed  Google Scholar 

  45. Gee AO, Lee G-C (2012) Alternative bearings in total knee arthroplasty. Am J Orthop (Belle Mead NJ) 41:280–283

    Google Scholar 

  46. Kurtz SM (2009) UHMWPE biomaterials handbook: ultra-high molecular weight polyethylene in total joint replacement. Academic, Amsterdam

    Google Scholar 

  47. Wright TM (2005) Polyethylene in knee arthroplasty: what is the future? Clin Orthop Relat Res 440:141–148

    PubMed  Google Scholar 

  48. Ahn NU, Nallamshetty L, Ahn UM, Buchowski JM, Rose PS, Lemma MA et al (2001) Early failure associated with the use of Hylamer-M spacers in three primary AMK total knee arthroplasties. J Arthroplasty 16:136–139

    CAS  PubMed  Google Scholar 

  49. Medel F, Kurtz SM, Klein G, Levine H, Sharkey P, Austin M et al (2008) Clinical, surface damage and oxidative performance of poly II tibial inserts after long-term implantation. J Long Term Eff Med Implants 18:151–165

    PubMed  Google Scholar 

  50. Norton MR, Yarlagadda R, Anderson GH (2002) Catastrophic failure of the Elite Plus total hip replacement, with a Hylamer acetabulum and Zirconia ceramic femoral head. J Bone Joint Surg Br 84:631–635

    CAS  PubMed  Google Scholar 

  51. Jasty M, Rubash HE, Muratoglu O (2005) Highly cross-linked polyethylene: the debate is over–in the affirmative. J Arthroplasty 20(4 Suppl 2):55–58

    PubMed  Google Scholar 

  52. Kurtz SM, Siskey RL, Dumbleton J (2009) Accelerated aqueous aging simulation of in vivo oxidation for gamma-sterilized UHMWPE. J Biomed Mater Res B Appl Biomater 90:368–372

    PubMed  Google Scholar 

  53. Kurtz SM, Hozack W, Marcolongo M, Turner J, Rimnac C, Edidin A (2003) Degradation of mechanical properties of UHMWPE acetabular liners following long-term implantation. J Arthroplasty 18(7 Suppl 1):68–78

    PubMed  Google Scholar 

  54. Kurtz SM, Muratoglu OK, Evans M, Edidin AA (1999) Advances in the processing, sterilization, and crosslinking of ultra-high molecular weight polyethylene for total joint arthroplasty. Biomaterials 20:1659–1688

    CAS  PubMed  Google Scholar 

  55. Ries MD, Weaver K, Rose RM, Gunther J, Sauer W, Beals N (1996) Fatigue strength of polyethylene after sterilization by gamma irradiation or ethylene oxide. Clin Orthop Relat Res 333:87–95

    PubMed  Google Scholar 

  56. Li S, Burstein AH (1994) Ultra-high molecular weight polyethylene. The material and its use in total joint implants. J Bone Joint Surg Am 76:1080–1090

    CAS  PubMed  Google Scholar 

  57. Currier BH, Currier JH, Mayor MB, Lyford KA, Van Citters DW, Collier JP (2007) In vivo oxidation of gamma-barrier-sterilized ultra-high-molecular-weight polyethylene bearings. J Arthroplasty 22:721–731

    PubMed  Google Scholar 

  58. MacDonald D, Sakona A, Ianuzzi A, Rimnac CM, Kurtz SM (2011) Do first-generation highly crosslinked polyethylenes oxidize in vivo? Clin Orthop Relat Res 469:2278–2285

    PubMed Central  PubMed  Google Scholar 

  59. Muratoglu OK, Wannomae KK, Rowell SL, Micheli BR, Malchau H (2010) Ex vivo stability loss of irradiated and melted ultra-high molecular weight polyethylene. J Bone Joint Surg Am 92:2809–2816

    PubMed  Google Scholar 

  60. Bargmann LS, Bargmann BC, Collier JP, Currier BH, Mayor MB (1999) Current sterilization and packaging methods for polyethylene. Clin Orthop Relat Res 369:49–58

    PubMed  Google Scholar 

  61. Collier JP, Sutula LC, Currier BH, Currier JH, Wooding RE, Williams IR et al (1996) Overview of polyethylene as a bearing material: comparison of sterilization methods. Clin Orthop Relat Res 333:76–86

    PubMed  Google Scholar 

  62. Costa L, Luda MP, Trossarelli L, Brach del Prever EM, Crova M, Gallinaro P (1998) In vivo UHMWPE biodegradation of retrieved prosthesis. Biomaterials 19:1371–1385

    CAS  PubMed  Google Scholar 

  63. Sakellariou VI, Sculco P, Poultsides L, Wright T, Sculco TP (2013) Highly cross-linked polyethylene may not have an advantage in total knee arthroplasty. HSS J 9:264–269

    PubMed Central  PubMed  Google Scholar 

  64. Haider H, Weisenburger JN, Kurtz SM, Rimnac CM, Freedman J, Schroeder DW et al (2012) Does vitamin E-stabilized ultrahigh-molecular-weight polyethylene address concerns of cross-linked polyethylene in total knee arthroplasty? J Arthroplasty 27:461–469

    PubMed  Google Scholar 

  65. Schwiesau J, Fritz B, Kutzner I, Bergmann G, Grupp TM (2014) CR TKA UHMWPE wear tested after artificial aging of the vitamin E treated gliding component by simulating daily patient activities. Biomed Res Int 2014:567374

    PubMed Central  PubMed  Google Scholar 

  66. Cadambi A, Engh GA, Dwyer KA, Vinh TN (1994) Osteolysis of the distal femur after total knee arthroplasty. J Arthroplasty 9:579–594

    CAS  PubMed  Google Scholar 

  67. Engh GA, Parks NL, Ammeen DJ (1994) Tibial osteolysis in cementless total knee arthroplasty. A review of 25 cases treated with and without tibial component revision. Clin Orthop Relat Res 309:33–43

    PubMed  Google Scholar 

  68. Engh GA, Ammeen DJ (2001) Periprosthetic osteolysis with total knee arthroplasty. Instr Course Lect 50:391–398

    CAS  PubMed  Google Scholar 

  69. Kim YH, Oh JH, Oh SH (1995) Osteolysis around cementless porous-coated anatomic knee prostheses. J Bone Joint Surg Br 77:236–241

    CAS  PubMed  Google Scholar 

  70. Lewonowski K, Dorr LD (1994) Revision of cementless total knee arthroplasty with massive osteolytic lesions. J Arthroplasty 9:661–663

    CAS  PubMed  Google Scholar 

  71. O’Rourke MR, Callaghan JJ, Goetz DD, Sullivan PM, Johnston RC (2002) Osteolysis associated with a cemented modular posterior-cruciate-substituting total knee design: five to eight-year follow-up. J Bone Joint Surg Am 84:1362–1371

    PubMed  Google Scholar 

  72. Pagnano MW, Scuderi GR, Insall JN (2001) Tibial osteolysis associated with the modular tibial tray of a cemented posterior stabilized total knee replacement: a case report. J Bone Joint Surg Am 83:1545–1548

    PubMed  Google Scholar 

  73. Robinson EJ, Mulliken BD, Bourne RB, Rorabeck CH, Alvarez C (1995) Catastrophic osteolysis in total knee replacement. A report of 17 cases. Clin Orthop Relat Res 321:98–105

    PubMed  Google Scholar 

  74. Schmalzried TP (1996) The posterior stabilized total knee prosthesis. Assessment of polyethylene damage and osteolysis after a ten-year-minimum follow-up. J Bone Joint Surg Am 78:1446–1447

    CAS  PubMed  Google Scholar 

  75. Berry DJ, Wold LE, Rand JA (1993) Extensive osteolysis around an aseptic, stable, uncemented total knee replacement. Clin Orthop Relat Res 293:204–207

    PubMed  Google Scholar 

  76. Gross TP, Lennox DW (1992) Osteolytic cyst-like area associated with polyethylene and metallic debris after total knee replacement with an uncemented vitallium prosthesis. A case report. J Bone Joint Surg Am 74:1096–1101

    CAS  PubMed  Google Scholar 

  77. Ayers DC (1997) Polyethylene wear and osteolysis following total knee replacement. Instr Course Lect 46:205–213

    CAS  PubMed  Google Scholar 

  78. Ries MD, Guiney WJ, Lynch F (1994) Osteolysis associated with cemented total knee arthroplasty. A case report. J Arthroplasty 9:555–558

    CAS  PubMed  Google Scholar 

  79. Wasielewski RC, Parks N, Williams I, Surprenant H, Collier JP, Engh G (1997) Tibial insert undersurface as a contributing source of polyethylene wear debris. Clin Orthop Relat Res 345:53–59

    PubMed  Google Scholar 

  80. Peters PCJ, Engh GA, Dwyer KA, Vinh TN (1992) Osteolysis after total knee arthroplasty without cement. J Bone Joint Surg Am 74:864–876

    PubMed  Google Scholar 

  81. Griffin FM, Scuderi GR, Gillis AM, Li S, Jimenez E, Smith T (1998) Osteolysis associated with cemented total knee arthroplasty. J Arthroplasty 13:592–598

    CAS  PubMed  Google Scholar 

  82. Chiba J, Rubash HE (1994) A biochemical, histologic, and immunohistologic analysis of membranes obtained from failed cemented and cementless total knee arthroplasty. Clin Orthop Relat Res 343:278

    Google Scholar 

  83. Ingham E, Fisher J (2005) The role of macrophages in osteolysis of total joint replacement. Biomaterials 26:1271–1286

    CAS  PubMed  Google Scholar 

  84. Jacobs JJ, Roebuck KA, Archibeck M, Hallab NJ, Glant TT (2010) Osteolysis: basic science. Clin Orthop Relat Res 393:71–77

    Google Scholar 

  85. Hallab NJ, Jacobs JJ (2009) Biologic effects of implant debris. Bull NYU Hosp Jt Dis 67:182–188

    PubMed  Google Scholar 

  86. Dorr LD, Wan Z, Shahrdar C, Sirianni L, Boutary M, Yun A (2005) Clinical performance of a Durasul highly cross-linked polyethylene acetabular liner for total hip arthroplasty at five years. J Bone Joint Surg Am 87:1816–1821

    PubMed  Google Scholar 

  87. Manning DW, Chiang PP, Martell JM, Galante JO, Harris WH (2005) In vivo comparative wear study of traditional and highly cross-linked polyethylene in total hip arthroplasty. J Arthroplasty 20:880–886

    PubMed  Google Scholar 

  88. Mutimer J, Devane PA, Adams K, Horne JG (2010) Highly crosslinked polyethylene reduces wear in total hip arthroplasty at 5 years. Clin Orthop Relat Res 468:3228–3233

    PubMed Central  PubMed  Google Scholar 

  89. Williams PA, Brown CM, Tsukamoto R, Clarke IC (2010) Polyethylene wear debris produced in a knee simulator model: effect of crosslinking and counterface material. J Biomed Mater Res B Appl Biomater 92:78–85

    PubMed  Google Scholar 

  90. Stoller AP, Johnson TS, Popoola OO, Humphrey SM, Blanchard CR (2011) Highly crosslinked polyethylene in posterior-stabilized total knee arthroplasty: in vitro performance evaluation of wear, delamination, and tibial post durability. J Arthroplasty 26:483–491

    PubMed  Google Scholar 

  91. Popoola OO, Yao JQ, Johnson TS, Blanchard CR (2010) Wear, delamination, and fatigue resistance of melt-annealed highly crosslinked UHMWPE cruciate-retaining knee inserts under activities of daily living. J Orthop Res 28:1120–1126

    CAS  PubMed  Google Scholar 

  92. Minoda Y, Kobayashi A, Iwaki H, Iwakiri K, Inori F, Sugama R et al (2009) In vivo analysis of polyethylene wear particles after total knee arthroplasty: the influence of improved materials and designs. J Bone Joint Surg Am 91(Suppl 6):67–73

    PubMed  Google Scholar 

  93. Hinarejos P, Pinol I, Torres A, Prats E, Gil-Gomez G, Puig-Verdie L (2013) Highly crosslinked polyethylene does not reduce the wear in total knee arthroplasty: in vivo study of particles in synovial fluid. J Arthroplasty 28:1333–1337

    PubMed  Google Scholar 

  94. Huot JC, Van Citters DW, Currier JH, Collier JP (2011) The effect of radiation dose on the tensile and impact toughness of highly cross-linked and remelted ultrahigh-molecular weight polyethylenes. J Biomed Mater Res B Appl Biomater 97:327–333

    PubMed  Google Scholar 

  95. Lachiewicz PF, Geyer MR (2011) The use of highly cross-linked polyethylene in total knee arthroplasty. J Am Acad Orthop Surg 19:143–151

    PubMed  Google Scholar 

  96. Ranawat CS, Flynn WFJ, Saddler S, Hansraj KK, Maynard MJ (1993) Long-term results of the total condylar knee arthroplasty. A 15-year survivorship study. Clin Orthop Relat Res 286:94–102

    PubMed  Google Scholar 

  97. Gill GS, Joshi AB, Mills DM (1999) Total condylar knee arthroplasty. 16- to 21-year results. Clin Orthop Relat Res 367:210–215

    PubMed  Google Scholar 

  98. Bartel DL, Bicknell VL, Wright TM (1986) The effect of conformity, thickness, and material on stresses in ultra-high molecular weight components for total joint replacement. J Bone Joint Surg Am 68:1041–1051

    CAS  PubMed  Google Scholar 

  99. Bartel DL, Burstein AH, Santavicca EA, Insall JN (1982) Performance of the tibial component in total knee replacement. J Bone Joint Surg Am 64:1026–1033

    CAS  PubMed  Google Scholar 

  100. Pomeroy DL, Schaper LA, Badenhausen WE, Suthers KE, Smith MW, Empson JA et al (2000) Results of all-polyethylene tibial components as a cost-saving technique. Clin Orthop Relat Res 380:140–143

    PubMed  Google Scholar 

  101. Rand JA, Trousdale RT, Ilstrup DM, Harmsen WS (2003) Factors affecting the durability of primary total knee prostheses. J Bone Joint Surg Am 85:259–265

    PubMed  Google Scholar 

  102. Rand JA (1993) Comparison of metal-backed and all-polyethylene tibial components in cruciate condylar total knee arthroplasty. J Arthroplasty 8:307–313

    CAS  PubMed  Google Scholar 

  103. Adalberth G, Nilsson KG, Bystrom S, Kolstad K, Milbrink J (2001) All-polyethylene versus metal-backed and stemmed tibial components in cemented total knee arthroplasty. A prospective, randomised RSA study. J Bone Joint Surg Br 83:825–831

    CAS  PubMed  Google Scholar 

  104. Adalberth G, Nilsson KG, Bystrom S, Kolstad K, Milbrink J (2000) Low-conforming all-polyethylene tibial component not inferior to metal-backed component in cemented total knee arthroplasty: prospective, randomized radiostereometric analysis study of the AGC total knee prosthesis. J Arthroplasty 15:783–792

    CAS  PubMed  Google Scholar 

  105. Hyldahl H, Regner L, Carlsson L, Karrholm J, Weidenhielm L (2005) All-polyethylene vs. metal-backed tibial component in total knee arthroplasty-a randomized RSA study comparing early fixation of horizontally and completely cemented tibial components: part 2. Completely cemented components: MB not superior to AP component. Acta Orthop 76:778–784

    PubMed  Google Scholar 

  106. Hyldahl H, Regner L, Carlsson L, Karrholm J, Weidenhielm L (2005) All-polyethylene vs. metal-backed tibial component in total knee arthroplasty-a randomized RSA study comparing early fixation of horizontally and completely cemented tibial components: part 1. Horizontally cemented components: AP better fixated than MB. Acta Orthop 76:769–777

    PubMed  Google Scholar 

  107. Muller SD, Deehan DJ, Holland JP, Outterside SE, Kirk LMG, Gregg PJ et al (2006) Should we reconsider all-polyethylene tibial implants in total knee replacement? J Bone Joint Surg Br 88:1596–1602

    CAS  PubMed  Google Scholar 

  108. Robinson RP, Green TM (2011) Eleven-year implant survival rates of the all-polyethylene and metal-backed modular Optetrak posterior stabilized knee in bilateral simultaneous cases. J Arthroplasty 26:1165–1169

    PubMed  Google Scholar 

  109. Gudnason A, Hailer NP, W-Dahl A, Sundberg M, Robertsson O (2014) All-polyethylene versus metal-backed tibial components-An analysis of 27,733 cruciate-retaining total knee replacements from the Swedish Knee Arthroplasty Register. J Bone Joint Surg Am 96:994–999

    PubMed  Google Scholar 

  110. Nouta KA, Verra WC, Pijls BG, Schoones JW, Nelissen RGHH (2012) All-polyethylene tibial components are equal to metal-backed components: systematic review and meta-regression. Clin Orthop Relat Res 470:3549–3559

    PubMed Central  PubMed  Google Scholar 

  111. Gioe TJ, Stroemer ES, Santos ERG (2007) All-polyethylene and metal-backed tibias have similar outcomes at 10 years: a randomized level I [corrected] evidence study. Clin Orthop Relat Res 455:212–218

    PubMed  Google Scholar 

  112. Bettinson KA, Pinder IM, Moran CG, Weir DJ, Lingard EA (2009) All-polyethylene compared with metal-backed tibial components in total knee arthroplasty at ten years. A prospective, randomized controlled trial. J Bone Joint Surg Am 91:1587–1594

    PubMed  Google Scholar 

  113. Dalury DF, Pomeroy DL, Gonzales RA, Gruen TA, Adams MJ, Empson JA (2009) Midterm results of all-polyethylene tibial components in primary total knee arthroplasty. J Arthroplasty 24:620–624

    PubMed  Google Scholar 

  114. Voigt J, Mosier M (2011) Cemented all-polyethylene and metal-backed polyethylene tibial components used for primary total knee arthroplasty: a systematic review of the literature and meta-analysis of randomized controlled trials involving 1798 primary total knee implants. J Bone Joint Surg Am 93:1790–1798

    PubMed  Google Scholar 

  115. Grewal R, Rimmer MG, Freeman MA (1992) Early migration of prostheses related to long-term survivorship. Comparison of tibial components in knee replacement. J Bone Joint Surg Br 74:239–242

    CAS  PubMed  Google Scholar 

  116. Ryd L, Hansson U, Blunn G, Lindstrand A, Toksvig-Larsen S (1999) Failure of partial cementation to achieve implant stability and bone ingrowth: a long-term roentgen stereophotogrammetric study of tibial components. J Orthop Res 17:311–320

    CAS  PubMed  Google Scholar 

  117. Babis GC, Trousdale RT, Morrey BF (2002) The effectiveness of isolated tibial insert exchange in revision total knee arthroplasty. J Bone Joint Surg Am 84:64–68

    PubMed  Google Scholar 

  118. Engh GA, Koralewicz LM, Pereles TR (2000) Clinical results of modular polyethylene insert exchange with retention of total knee arthroplasty components. J Bone Joint Surg Am 82:516–523

    CAS  PubMed  Google Scholar 

  119. Griffin WL, Scott RD, Dalury DF, Mahoney OM, Chiavetta JB, Odum SM (2007) Modular insert exchange in knee arthroplasty for treatment of wear and osteolysis. Clin Orthop Relat Res 464:132–137

    PubMed  Google Scholar 

  120. Willson SE, Munro ML, Sandwell JC, Ezzet KA, Colwell CWJ (2010) Isolated tibial polyethylene insert exchange outcomes after total knee arthroplasty. Clin Orthop Relat Res 468:96–101

    PubMed Central  PubMed  Google Scholar 

  121. Branemark R, Branemark PI, Rydevik B, Myers RR (2001) Osseointegration in skeletal reconstruction and rehabilitation: a review. J Rehabil Res Dev 38:175–181

    CAS  PubMed  Google Scholar 

  122. Berger RA, Lyon JH, Jacobs JJ, Barden RM, Berkson EM, Sheinkop MB et al (2001) Problems with cementless total knee arthroplasty at 11 years followup. Clin Orthop Relat Res 392:196–207

    PubMed  Google Scholar 

  123. Wang H, Lou H, Zhang H, Jiang J, Liu K (2014) Similar survival between uncemented and cemented fixation prostheses in total knee arthroplasty: a meta-analysis and systematic comparative analysis using registers. Knee Surg Sports Traumatol Arthrosc 22:3191–3197

    PubMed  Google Scholar 

  124. Gandhi R, Tsvetkov D, Davey JR, Mahomed NN (2009) Survival and clinical function of cemented and uncemented prostheses in total knee replacement: a meta-analysis. J Bone Joint Surg Br 91:889–895

    CAS  PubMed  Google Scholar 

  125. Jamsen E, Huhtala H, Puolakka T, Moilanen T (2009) Risk factors for infection after knee arthroplasty. A register-based analysis of 43,149 cases. J Bone Joint Surg Am 91:38–47

    PubMed  Google Scholar 

  126. Bohm E, Zhu N, Gu J, de Guia N, Linton C, Anderson T et al (2014) Does adding antibiotics to cement reduce the need for early revision in total knee arthroplasty? Clin Orthop Relat Res 472:162–168

    PubMed Central  PubMed  Google Scholar 

  127. Ranawat CS, Flynn WFJ, Deshmukh RG (1994) Impact of modern technique on long-term results of total condylar knee arthroplasty. Clin Orthop Relat Res 309:131–135

    PubMed  Google Scholar 

  128. Meftah M, Ranawat AS, Sood AB, Rodriguez JA, Ranawat CS (2012) All-polyethylene tibial implant in young, active patients a concise follow-up, 10 to 18 years. J Arthroplasty 27:10–14

    PubMed  Google Scholar 

  129. Rasquinha VJ, Ranawat CS, Cervieri CL, Rodriguez JA (2006) The press-fit condylar modular total knee system with a posterior cruciate-substituting design. A concise follow-up of a previous report. J Bone Joint Surg Am 88:1006–1010

    CAS  PubMed  Google Scholar 

  130. Rodriguez JA, Baez N, Rasquinha V, Ranawat CS (2001) Metal-backed and all-polyethylene tibial components in total knee replacement. Clin Orthop Relat Res 392:174–183

    PubMed  Google Scholar 

  131. Lachiewicz PF, Soileau ES (2009) Fifteen-year survival and osteolysis associated with a modular posterior stabilized knee replacement. A concise follow-up of a previous report. J Bone Joint Surg Am 91:1419–1423

    PubMed  Google Scholar 

  132. Abdeen AR, Collen SR, Vince KG (2010) Fifteen-year to 19-year follow-up of the Insall-Burstein-1 total knee arthroplasty. J Arthroplasty 25:173–178

    PubMed  Google Scholar 

  133. Callaghan JJ, O’Rourke MR, Iossi MF, Liu SS, Goetz DD, Vittetoe DA et al (2005) Cemented rotating-platform total knee replacement. a concise follow-up, at a minimum of fifteen years, of a previous report. J Bone Joint Surg Am 87:1995–1998

    PubMed  Google Scholar 

  134. Dixon MC, Brown RR, Parsch D, Scott RD (2005) Modular fixed-bearing total knee arthroplasty with retention of the posterior cruciate ligament. A study of patients followed for a minimum of fifteen years. J Bone Joint Surg Am 87:598–603

    PubMed  Google Scholar 

  135. Nilsson KG, Henricson A, Norgren B, Dalen T (2006) Uncemented HA-coated implant is the optimum fixation for TKA in the young patient. Clin Orthop Relat Res 448:129–139

    PubMed  Google Scholar 

  136. Henricson A, Linder L, Nilsson KG (2008) A trabecular metal tibial component in total knee replacement in patients younger than 60 years: a two-year radiostereophotogrammetric analysis. J Bone Joint Surg Br 90:1585–1593

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Patel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Patel, R. (2015). Aseptic Failure in Total Knee Arthroplasty. In: Rodríguez-Merchán, E., Oussedik, S. (eds) Total Knee Arthroplasty. Springer, Cham. https://doi.org/10.1007/978-3-319-17554-6_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17554-6_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17553-9

  • Online ISBN: 978-3-319-17554-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics