Advertisement

Technological Aids in Total Knee Arthroplasty: Navigation, Patient-Specific Instrumentation, and Robotics

  • Paul L. Sousa
  • Matthew P. Abdel

Abstract

Total knee arthroplasty has dramatically enhanced the management of end-stage knee arthritis. Despite advances over the last few decades, some patients continue to be dissatisfied with their arthroplasty. Component alignment has become a focus, as malalignment has persisted despite improvements in surgical technique. While technology such as navigation, patient-specific instrumentation (PSI), and robotic-assisted surgery (RAS) may enhance surgical execution, it remains unclear whether more accurate alignment can actually improve survivorship or patient satisfaction. At the current time, navigation, PSI, and RAS are more costly than conventional techniques. In order for more widespread adoption, incremental clinical gains and enhanced cost-effectiveness must be demonstrated. There are, however, specific cases where advanced technology has a role such as severe extra-articular deformities and obstruction of the femoral canal.

Keywords

Total knee arthroplasty (TKA) Navigation Computer-assisted surgery (CAS) Patient-specific instrumentation (PSI) Robotic-assisted surgery (RAS) 

References

  1. 1.
    Abdel MP, Morrey ME, Jensen MR, Morrey BF (2011) Increased long-term survival of posterior cruciate-retaining versus posterior cruciate-stabilizing total knee replacements. J Bone Joint Surg Am 93:2072–2078PubMedCrossRefGoogle Scholar
  2. 2.
    Nam D, Nunley RM, Barrack RL (2014) Patient dissatisfaction following total knee replacement: a growing concern? Bone Joint J 96-B(11 Suppl A):96–100PubMedCrossRefGoogle Scholar
  3. 3.
    Lotke PA, Ecker ML (1977) Influence of positioning of prosthesis in total knee replacement. J Bone Joint Surg Am 59:77–79PubMedGoogle Scholar
  4. 4.
    Bargren JH, Blaha JD, Freeman MA (1983) Alignment in total knee arthroplasty. Correlated biomechanical and clinical observations. Clin Orthop Relat Res 173:178–183PubMedGoogle Scholar
  5. 5.
    Jeffery RS, Morris RW, Denham RA (1991) Coronal alignment after total knee replacement. J Bone Joint Surg Br 73:709–714PubMedGoogle Scholar
  6. 6.
    Abdel MP, Oussedik S, Parratte S, Lustig S, Haddad FS (2014) Coronal alignment in total knee replacement: historical review, contemporary analysis, and future direction. Bone Joint J 96-B:857–862PubMedCrossRefGoogle Scholar
  7. 7.
    Czurda T, Fennema P, Baumgartner M, Ritschl P (2010) The association between component malalignment and post-operative pain following navigation-assisted total knee arthroplasty: results of a cohort/nested case-control study. Knee Surg Sports Traumatol Arthrosc 18:863–869PubMedCrossRefGoogle Scholar
  8. 8.
    Ritter MA, Davis KE, Meding JB, Pierson JL, Berend ME, Malinzak RA (2011) The effect of alignment and BMI on failure of total knee replacement. J Bone Joint Surg Am 93:1588–1596PubMedCrossRefGoogle Scholar
  9. 9.
    Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K (2007) Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty 22:1097–1106PubMedCrossRefGoogle Scholar
  10. 10.
    Bathis H, Perlick L, Tingart M, Luring C, Zurakowski D, Grifka J (2004) Alignment in total knee arthroplasty. A comparison of computer-assisted surgery with the conventional technique. J Bone Joint Surg Br 86:682–687PubMedCrossRefGoogle Scholar
  11. 11.
    Nam D, Cody EA, Nguyen JT, Figgie MP, Mayman DJ (2014) Extramedullary guides versus portable, accelerometer-based navigation for tibial alignment in total knee arthroplasty: a randomized, controlled trial: winner of the 2013 HAP PAUL award. J Arthroplasty 29:288–294PubMedCrossRefGoogle Scholar
  12. 12.
    Hetaimish BM, Khan MM, Simunovic N, Al-Harbi HH, Bhandari M, Zalzal PK (2012) Meta-analysis of navigation vs conventional total knee arthroplasty. J Arthroplasty 27:1177–1182PubMedCrossRefGoogle Scholar
  13. 13.
    Bauwens K, Matthes G, Wich M et al (2007) Navigated total knee replacement. A meta-analysis. J Bone Joint Surg Am 89:261–269PubMedCrossRefGoogle Scholar
  14. 14.
    Cheng T, Pan XY, Mao X, Zhang GY, Zhang XL (2012) Little clinical advantage of computer-assisted navigation over conventional instrumentation in primary total knee arthroplasty at early follow-up. Knee 19:237–245PubMedCrossRefGoogle Scholar
  15. 15.
    Hernandez-Vaquero D, Noriega-Fernandez A, Fernandez-Carreira JM, Fernandez-Simon JM, de Los L, Rios J (2014) Computer-assisted surgery improves rotational positioning of the femoral component but not the tibial component in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 22:3127–3134PubMedCrossRefGoogle Scholar
  16. 16.
    Ishida K, Matsumoto T, Tsumura N et al (2011) Mid-term outcomes of computer-assisted total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19:1107–1112PubMedCrossRefGoogle Scholar
  17. 17.
    Harvie P, Sloan K, Beaver RJ (2012) Computer navigation vs conventional total knee arthroplasty: five-year functional results of a prospective randomized trial. J Arthroplasty 27(667–672):e661Google Scholar
  18. 18.
    Huang TW, Kuo LT, Peng KT, Lee MS, Hsu RW (2014) Computed tomography evaluation in total knee arthroplasty: computer-assisted navigation versus conventional instrumentation in patients with advanced valgus arthritic knees. J Arthroplasty 29:2363–2368PubMedCrossRefGoogle Scholar
  19. 19.
    Kim YH, Park JW, Kim JS (2012) Computer-navigated versus conventional total knee arthroplasty a prospective randomized trial. J Bone Joint Surg Am 94:2017–2024PubMedCrossRefGoogle Scholar
  20. 20.
    Burnett RS, Barrack RL (2013) Computer-assisted total knee arthroplasty is currently of no proven clinical benefit: a systematic review. Clin Orthop Relat Res 471:264–276PubMedCentralPubMedCrossRefGoogle Scholar
  21. 21.
    Moskal JT, Capps SG, Mann JW, Scanelli JA (2014) Navigated versus conventional total knee arthroplasty. J Knee Surg 27:235–248PubMedCrossRefGoogle Scholar
  22. 22.
    Johnson DR, Dennis DA, Kindsfater KA, Kim RH (2013) Evaluation of total knee arthroplasty performed with and without computer navigation: a bilateral total knee arthroplasty study. J Arthroplasty 28:455–458PubMedCrossRefGoogle Scholar
  23. 23.
    Lutzner J, Dexel J, Kirschner S (2013) No difference between computer-assisted and conventional total knee arthroplasty: five-year results of a prospective randomised study. Knee Surg Sports Traumatol Arthrosc 21:2241–2247PubMedCrossRefGoogle Scholar
  24. 24.
    Cip J, Widemschek M, Luegmair M, Sheinkop MB, Benesch T, Martin A (2014) Conventional versus computer-assisted technique for total knee arthroplasty: a minimum of 5-year follow-up of 200 patients in a prospective randomized comparative trial. J Arthroplasty 29:1795–1802PubMedCrossRefGoogle Scholar
  25. 25.
    Hoffart HE, Langenstein E, Vasak N (2012) A prospective study comparing the functional outcome of computer-assisted and conventional total knee replacement. J Bone Joint Surg Br 94:194–199PubMedCrossRefGoogle Scholar
  26. 26.
    Allen CL, Hooper GJ, Oram BJ, Wells JE (2014) Does computer-assisted total knee arthroplasty improve the overall component position and patient function? Int Orthop 38:251–257PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Patil S, McCauley JC, Pulido P, Colwell CW Jr (2015) How do knee implants perform past the second decade? Nineteen- to 25-year followup of the press-fit condylar design TKA. Clin Orthop Relat Res 473:135–140PubMedCrossRefGoogle Scholar
  28. 28.
    Callaghan JJ, Beckert MW, Hennessy DW, Goetz DD, Kelley SS (2013) Durability of a cruciate-retaining TKA with modular tibial trays at 20 years. Clin Orthop Relat Res 471:109–117PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Papadopoulos EC, Parvizi J, Lai CH, Lewallen DG (2002) Total knee arthroplasty following prior distal femoral fracture. Knee 9:267–274PubMedCrossRefGoogle Scholar
  30. 30.
    Wang JW, Wang CJ (2002) Total knee arthroplasty for arthritis of the knee with extra-articular deformity. J Bone Joint Surg Am 84-A:1769–1774PubMedGoogle Scholar
  31. 31.
    Lonner JH, Siliski JM, Lotke PA (2000) Simultaneous femoral osteotomy and total knee arthroplasty for treatment of osteoarthritis associated with severe extra-articular deformity. J Bone Joint Surg Am 82:342–348PubMedGoogle Scholar
  32. 32.
    Catani F, Digennaro V, Ensini A, Leardini A, Giannini S (2012) Navigation-assisted total knee arthroplasty in knees with osteoarthritis due to extra-articular deformity. Knee Surg Sports Traumatol Arthrosc 20:546–551PubMedCrossRefGoogle Scholar
  33. 33.
    Tigani D, Masetti G, Sabbioni G, Ben Ayad R, Filanti M, Fosco M (2012) Computer-assisted surgery as indication of choice: total knee arthroplasty in case of retained hardware or extra-articular deformity. Int Orthop 36:1379–1385PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Klein GR, Austin MS, Smith EB, Hozack WJ (2006) Total knee arthroplasty using computer-assisted navigation in patients with deformities of the femur and tibia. J Arthroplasty 21:284–288PubMedCrossRefGoogle Scholar
  35. 35.
    Fehring TK, Mason JB, Moskal J, Pollock DC, Mann J, Williams VJ (2006) When computer-assisted knee replacement is the best alternative. Clin Orthop Relat Res 452:132–136PubMedCrossRefGoogle Scholar
  36. 36.
    Bottros J, Klika AK, Lee HH, Polousky J, Barsoum WK (2008) The use of navigation in total knee arthroplasty for patients with extra-articular deformity. J Arthroplasty 23:74–78PubMedCrossRefGoogle Scholar
  37. 37.
    Manzotti A, Chemello C, Pullen C, Cerveri P, Confalonieri N (2012) Computer-assisted total knee arthroplasty after prior femoral fracture without hardware removal. Orthopedics 35(10 Suppl):34–39PubMedCrossRefGoogle Scholar
  38. 38.
    Mullaji A, Shetty GM (2009) Computer-assisted total knee arthroplasty for arthritis with extra-articular deformity. J Arthroplasty 24(1164–1169):e1161Google Scholar
  39. 39.
    Barrett WP, Mason JB, Moskal JT, Dalury DF, Oliashirazi A, Fisher DA (2011) Comparison of radiographic alignment of imageless computer-assisted surgery vs conventional instrumentation in primary total knee arthroplasty. J Arthroplasty 26(1273–1284):e1271Google Scholar
  40. 40.
    Choi WC, Lee S, An JH, Kim D, Seong SC, Lee MC (2011) Plain radiograph fails to reflect the alignment and advantages of navigation in total knee arthroplasty. J Arthroplasty 26:756–764PubMedCrossRefGoogle Scholar
  41. 41.
    Kim YH, Kim JS, Choi Y, Kwon OR (2009) Computer-assisted surgical navigation does not improve the alignment and orientation of the components in total knee arthroplasty. J Bone Joint Surg Am 91:14–19PubMedCrossRefGoogle Scholar
  42. 42.
    Zhang GQ, Chen JY, Chai W, Liu M, Wang Y (2011) Comparison between computer-assisted-navigation and conventional total knee arthroplasties in patients undergoing simultaneous bilateral procedures: a randomized clinical trial. J Bone Joint Surg Am 93:1190–1196PubMedCrossRefGoogle Scholar
  43. 43.
    Thienpont E, Fennema P, Price A (2013) Can technology improve alignment during knee arthroplasty. Knee 20(Suppl 1):S21–S28PubMedCrossRefGoogle Scholar
  44. 44.
    Stiehl JB, Jackson S, Szabo A (2009) Multi-factorial analysis of time efficiency in total knee arthroplasty. Comput Aided Surg 14:58–62PubMedCrossRefGoogle Scholar
  45. 45.
    Suero EM, Plaskos C, Dixon PL, Pearle AD (2012) Adjustable cutting blocks improve alignment and surgical time in computer-assisted total knee replacement. Knee Surg Sports Traumatol Arthrosc 20:1736–1741PubMedCrossRefGoogle Scholar
  46. 46.
    Novak EJ, Silverstein MD, Bozic KJ (2007) The cost-effectiveness of computer-assisted navigation in total knee arthroplasty. J Bone Joint Surg Am 89:2389–2397PubMedCrossRefGoogle Scholar
  47. 47.
    Parratte S, Pagnano MW, Trousdale RT, Berry DJ (2010) Effect of postoperative mechanical axis alignment on the fifteen-year survival of modern, cemented total knee replacements. J Bone Joint Surg Am 92:2143–2149PubMedCrossRefGoogle Scholar
  48. 48.
    Bonner TJ, Eardley WG, Patterson P, Gregg PJ (2011) The effect of post-operative mechanical axis alignment on the survival of primary total knee replacements after a follow-up of 15 years. J Bone Joint Surg Br 93:1217–1222PubMedCrossRefGoogle Scholar
  49. 49.
    Manley M, Ong K, Lau E, Kurtz SM (2009) Total knee arthroplasty survivorship in the United States Medicare population: effect of hospital and surgeon procedure volume. J Arthroplasty 24:1061–1067PubMedCrossRefGoogle Scholar
  50. 50.
    Beldame J, Boisrenoult P, Beaufils P (2010) Pin track induced fractures around computer-assisted TKA. Orthop Traumatol Surg Res 96:249–255PubMedCrossRefGoogle Scholar
  51. 51.
    Chin PL, Yang KY, Yeo SJ, Lo NN (2005) Randomized control trial comparing radiographic total knee arthroplasty implant placement using computer navigation versus conventional technique. J Arthroplasty 20:618–626PubMedCrossRefGoogle Scholar
  52. 52.
    Chung BJ, Kang YG, Chang CB, Kim SJ, Kim TK (2009) Differences between sagittal femoral mechanical and distal reference axes should be considered in navigated TKA. Clin Orthop Relat Res 467:2403–2413PubMedCentralPubMedCrossRefGoogle Scholar
  53. 53.
    Lee DH, Padhy D, Lee SH, Nha KW, Park JH, Han SB (2012) Osteoporosis affects component positioning in computer navigation-assisted total knee arthroplasty. Knee 19:203–207PubMedCrossRefGoogle Scholar
  54. 54.
    Chauhan SK, Scott RG, Breidahl W, Beaver RJ (2004) Computer-assisted knee arthroplasty versus a conventional jig-based technique. A randomised, prospective trial. J Bone Joint Surg Br 86:372–377PubMedCrossRefGoogle Scholar
  55. 55.
    Li CH, Chen TH, Su YP, Shao PC, Lee KS, Chen WM (2008) Periprosthetic femoral supracondylar fracture after total knee arthroplasty with navigation system. J Arthroplasty 23:304–307PubMedCrossRefGoogle Scholar
  56. 56.
    Minoda Y, Kobayashi A, Iwaki H et al (2010) The risk of notching the anterior femoral cortex with the use of navigation systems in total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 18:718–722PubMedCrossRefGoogle Scholar
  57. 57.
    Minoda Y, Watanabe K, Iwaki H, Takahashi S, Fukui M, Nakamura H (2013) Theoretical risk of anterior femoral cortex notching in total knee arthroplasty using a navigation system. J Arthroplasty 28:1533–1537PubMedCrossRefGoogle Scholar
  58. 58.
    Gujarathi N, Putti AB, Abboud RJ, MacLean JG, Espley AJ, Kellett CF (2009) Risk of periprosthetic fracture after anterior femoral notching. Acta Orthop 80:553–556PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Ritter MA, Thong AE, Keating EM et al (2005) The effect of femoral notching during total knee arthroplasty on the prevalence of postoperative femoral fractures and on clinical outcome. J Bone Joint Surg Am 87:2411–2414PubMedCrossRefGoogle Scholar
  60. 60.
    Figgie MP, Goldberg VM, Figgie HE 3rd, Sobel M (1990) The results of treatment of supracondylar fracture above total knee arthroplasty. J Arthroplasty 5:267–276PubMedCrossRefGoogle Scholar
  61. 61.
    Abdel MP, von Roth P, Hommel H, Perka C, Pfitzner T (2014) Intraoperative Navigation of Patient-Specific Instrumentation Does Not Predict Final Implant Position. J Arthroplasty 11:2014Google Scholar
  62. 62.
    Sassoon A, Nam D, Nunley R, Barrack R (2014) Systematic review of patient-specific instrumentation in total knee arthroplasty: new but not improved. Clin Orthop Relat Res 25:2014Google Scholar
  63. 63.
    Thienpont E, Schwab PE, Fennema P (2014) A systematic review and meta-analysis of patient-specific instrumentation for improving alignment of the components in total knee replacement. Bone Joint J 96-B:1052–1061PubMedCrossRefGoogle Scholar
  64. 64.
    Cavaignac E, Pailhe R, Laumond G et al (2014) Evaluation of the accuracy of patient-specific cutting blocks for total knee arthroplasty: a meta-analysis. Int Orthop 10:2014Google Scholar
  65. 65.
    Parratte S, Blanc G, Boussemart T, Ollivier M, Le Corroller T, Argenson JN (2013) Rotation in total knee arthroplasty: no difference between patient-specific and conventional instrumentation. Knee Surg Sports Traumatol Arthrosc 21:2213–2219PubMedCrossRefGoogle Scholar
  66. 66.
    Roh YW, Kim TW, Lee S, Seong SC, Lee MC (2013) Is TKA using patient-specific instruments comparable to conventional TKA? A randomized controlled study of one system. Clin Orthop Relat Res 471:3988–3995PubMedCentralPubMedCrossRefGoogle Scholar
  67. 67.
    Asada S, Mori S, Matsushita T, Nakagawa K, Tsukamoto I, Akagi M (2014) Comparison of MRI- and CT-based patient-specific guides for total knee arthroplasty. Knee 21:1238–1243PubMedCrossRefGoogle Scholar
  68. 68.
    Ensini A, Timoncini A, Cenni F et al (2014) Intra- and post-operative accuracy assessments of two different patient-specific instrumentation systems for total knee replacement. Knee Surg Sports Traumatol Arthrosc 22:621–629PubMedCrossRefGoogle Scholar
  69. 69.
    Pfitzner T, Abdel MP, von Roth P, Perka C, Hommel H (2014) Small improvements in mechanical axis alignment achieved with MRI versus CT-based patient-specific instruments in TKA: a randomized clinical trial. Clin Orthop Relat Res 472:2913–2922PubMedCrossRefGoogle Scholar
  70. 70.
    Anderl W, Pauzenberger L, Kolblinger R et al (2014) Patient-specific instrumentation improved mechanical alignment, while early clinical outcome was comparable to conventional instrumentation in TKA. Knee Surg Sports Traumatol Arthrosc [Epub ahead of print]Google Scholar
  71. 71.
    Woolson ST, Harris AH, Wagner DW, Giori NJ (2014) Component alignment during total knee arthroplasty with use of standard or custom instrumentation: a randomized clinical trial using computed tomography for postoperative alignment measurement. J Bone Joint Surg Am 96:366–372PubMedCrossRefGoogle Scholar
  72. 72.
    Abdel MP, Parratte S, Blanc G et al (2014) No benefit of patient-specific instrumentation in TKA on functional and gait outcomes: a randomized clinical trial. Clin Orthop Relat Res 472:2468–2476PubMedCrossRefGoogle Scholar
  73. 73.
    Barrack RL, Ruh EL, Williams BM, Ford AD, Foreman K, Nunley RM (2012) Patient specific cutting blocks are currently of no proven value. J Bone Joint Surg Br 94(11 Suppl A):95–99PubMedCrossRefGoogle Scholar
  74. 74.
    DeHaan AM, Adams JR, DeHart ML, Huff TW (2014) Patient-specific versus conventional instrumentation for total knee arthroplasty: peri-operative and cost differences. J Arthroplasty 29:2065–2069PubMedCrossRefGoogle Scholar
  75. 75.
    Nunley RM, Ellison BS, Ruh EL et al (2012) Are patient-specific cutting blocks cost-effective for total knee arthroplasty? Clin Orthop Relat Res 470:889–894PubMedCentralPubMedCrossRefGoogle Scholar
  76. 76.
    Noble JW Jr, Moore CA, Liu N (2012) The value of patient-matched instrumentation in total knee arthroplasty. J Arthroplasty 27:153–155PubMedCrossRefGoogle Scholar
  77. 77.
    Chareancholvanich K, Narkbunnam R, Pornrattanamaneewong C (2013) A prospective randomised controlled study of patient-specific cutting guides compared with conventional instrumentation in total knee replacement. Bone Joint J 95-B:354–359PubMedCrossRefGoogle Scholar
  78. 78.
    Stronach BM, Pelt CE, Erickson J, Peters CL (2013) Patient-specific total knee arthroplasty required frequent surgeon-directed changes. Clin Orthop Relat Res 471:169–174PubMedCentralPubMedCrossRefGoogle Scholar
  79. 79.
    Victor J, Dujardin J, Vandenneucker H, Arnout N, Bellemans J (2014) Patient-specific guides do not improve accuracy in total knee arthroplasty: a prospective randomized controlled trial. Clin Orthop Relat Res 472:263–271PubMedCentralPubMedCrossRefGoogle Scholar
  80. 80.
    Thienpont E, Paternostre F, Pietsch M, Hafez M, Howell S (2013) Total knee arthroplasty with patient-specific instruments improves function and restores limb alignment in patients with extra-articular deformity. Knee 20:407–411PubMedCrossRefGoogle Scholar
  81. 81.
    Park SE, Lee CT (2007) Comparison of robotic-assisted and conventional manual implantation of a primary total knee arthroplasty. J Arthroplasty 22:1054–1059PubMedCrossRefGoogle Scholar
  82. 82.
    Song EK, Seon JK, Park SJ, Jung WB, Park HW, Lee GW (2011) Simultaneous bilateral total knee arthroplasty with robotic and conventional techniques: a prospective, randomized study. Knee Surg Sports Traumatol Arthrosc 19:1069–1076PubMedCrossRefGoogle Scholar
  83. 83.
    Song EK, Seon JK, Yim JH, Netravali NA, Bargar WL (2013) Robotic-assisted TKA reduces postoperative alignment outliers and improves gap balance compared to conventional TKA. Clin Orthop Relat Res 471:118–126PubMedCentralPubMedCrossRefGoogle Scholar
  84. 84.
    Liow MH, Xia Z, Wong MK, Tay KJ, Yeo SJ, Chin PL (2014) Robot-assisted total knee arthroplasty accurately restores the joint line and mechanical axis. A prospective randomised study. J Arthroplasty 29:2373–2377PubMedCrossRefGoogle Scholar
  85. 85.
    Kim SM, Park YS, Ha CW, Lim SJ, Moon YW (2012) Robot-assisted implantation improves the precision of component position in minimally invasive TKA. Orthopedics 35:e1334–e1339PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Department of Orthopedic SurgeryMayo ClinicRochesterUSA

Personalised recommendations