Advertisement

Analysis of Fractional ωmbNAF for Scalar Multiplication

  • Weixuan LiEmail author
  • Wei Yu
  • Kunpeng Wang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9065)

Abstract

In the current work we analyze the average Hamming weight of recoded sequence obtained by fractional ωmbNAF algorithm using Markov theory. Cost comparison between fractional ωmbNAF and different scalar recoding methods is given. Regardless of memory restraint, it is shown that \(\{2,3,5\}\mbox{NAF}_{3+\frac{3}{4}}\) improves tree-based double base chain by a factor of 6.8% and 13.2% is Jacobian curves(with efficiency-orient selected parameter a = 3) and inverted Edwards curves respectively.

Keywords

Elliptic curve cryptosystem scalar multiplication Hamming weight multi-base non-adjacent form fractional window 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bernstein, D.J., Lange, T.: Explicit-formulas database (2007)Google Scholar
  2. 2.
    Cohen, H., Frey, G., Avanzi, R., Doche, C., Lange, T., Nguyen, K., Vercauteren, F.: Handbook of elliptic and hyperelliptic curve cryptography. CRC Press (2010)Google Scholar
  3. 3.
    Dimitrov, V., Imbert, L., Mishra, P.: The double-base number system and its application to elliptic curve cryptography. Mathematics of Computation 77(262), 1075–1104 (2008)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Dimitrov, V., Imbert, L., Mishra, P.K.: Efficient and secure elliptic curve point multiplication using double-base chains. In: Roy, B. (ed.) ASIACRYPT 2005. LNCS, vol. 3788, pp. 59–78. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  5. 5.
    Doche, C., Habsieger, L.: A tree-based approach for computing double-base chains. In: Mu, Y., Susilo, W., Seberry, J. (eds.) ACISP 2008. LNCS, vol. 5107, pp. 433–446. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  6. 6.
    Doche, C., Imbert, L.: Extended double-base number system with applications to elliptic curve cryptography. In: Barua, R., Lange, T. (eds.) INDOCRYPT 2006. LNCS, vol. 4329, pp. 335–348. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  7. 7.
    Koblitz, N.: Elliptic curve cryptosystems. Mathematics of Computation 48(177), 203–209 (1987)zbMATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    Koyama, K., Tsuruoka, Y.: Speeding up elliptic cryptosystems by using a signed binary window method. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 345–357. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  9. 9.
    Li, M., Miri, A., Zhu, D.: Analysis of the hamming weight of the extended wmbnaf. IACR Cryptology ePrint Archive, pp. 569–569 (2011)Google Scholar
  10. 10.
    Longa, P.: Accelerating the scalar multiplication on elliptic curve cryptosystems over prime fields. PhD thesis, University of Ottawa (2007)Google Scholar
  11. 11.
    Longa, P., Gebotys, C.: Fast multibase methods and other several optimizations for elliptic curve scalar multiplication. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 443–462. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  12. 12.
    Miller, V.S.: Use of elliptic curves in cryptography. In: Williams, H.C. (ed.) CRYPTO 1985. LNCS, vol. 218, pp. 417–426. Springer, Heidelberg (1986)Google Scholar
  13. 13.
    Möller, B.: Improved techniques for fast exponentiation. In: Lee, P.J., Lim, C.H. (eds.) ICISC 2002. LNCS, vol. 2587, pp. 298–312. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Norris, J.R.: Markov chains. Number 2008. Cambridge University Press (1998)Google Scholar
  15. 15.
    Schmidt-Samoa, K., Semay, O., Takagi, T.: Analysis of fractional window recoding methods and their application to elliptic curve cryptosystems. IEEE Transactions on Computers 55(1), 48–57 (2006)zbMATHCrossRefGoogle Scholar
  16. 16.
    Yu, W., Wang, K., Li, B., Tian, S.: Triple-base number system for scalar multiplication. In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp. 433–451. Springer, Heidelberg (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  2. 2.Data Assurance and Communication Security Research CenterChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations