Advertisement

Cramer-Shoup Like Chosen Ciphertext Security from LPN

  • Xiaochao SunEmail author
  • Bao Li
  • Xianhui Lu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9065)

Abstract

We propose two chosen ciphertext secure public key encryption schemes from the learning parity with noise problem. Currently, all existing chosen ciphertext secure public key encryption schemes from the hard learning problems are constructed based on the All-But-One technique, while our schemes are based on the Cramer-Shoup technique.

Keywords

Public key encryption chosen-ciphertext security LPN 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Alekhnovich, M.: More on Average Case vs Approximation Complexity. In: FOCS, pp. 298–307 (2003)Google Scholar
  3. 3.
    Alperin-Sheriff, J., Peikert, C.: Circular and KDM Security for Identity-Based Encryption. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 334–352. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  4. 4.
    Becker, A., Joux, A., May, A., Meurer, A.: Decoding Random Binary Linear Codes in 2 n/20: How 1 + 1 = 0 Improves Information Set Decoding. In: Pointcheval, Johansson (eds.) [39], pp. 520–536Google Scholar
  5. 5.
    Bernstein, D.J., Lange, T., Peters, C.: Smaller Decoding Exponents: Ball-Collision Decoding. In: Rogaway (ed.) [41], pp. 743–760Google Scholar
  6. 6.
    Boneh, D., Canetti, R., Halevi, S., Katz, J.: Chosen-Ciphertext Security from Identity-Based Encryption. SIAM J. Comput. 36(5), 1301–1328 (2007)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Camenisch, J.L., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  8. 8.
    Cash, D., Hofheinz, D., Kiltz, E., Peikert, C.: Bonsai Trees, or How to Delegate a Lattice Basis. In: Gilbert (ed.) [20], pp. 523–552Google Scholar
  9. 9.
    Cramer, R., Shoup, V.: A Practical Public Key Cryptosystem Provably Secure Against Adaptive Chosen Ciphertext Attack. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 13–25. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  10. 10.
    Cramer, R., Shoup, V.: Universal Hash Proofs and a Paradigm for Adaptive Chosen Ciphertext Secure Public-Key Encryption. In: Knudsen, L.R. (ed.) EUROCRYPT 2002. LNCS, vol. 2332, pp. 45–64. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  11. 11.
    Cramer, R., Shoup, V.: Design and Analysis of Practical Public-Key Encryption Schemes Secure against Adaptive Chosen Ciphertext Attack. SIAM J. Comput. 33(1), 167–226 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Damgård, I., Park, S.: How Practical is Public-Key Encryption Based on LPN and Ring-LPN? Cryptology ePrint Archive, Report 2012/699 (2012), http://eprint.iacr.org/
  13. 13.
    Dodis, Y., Ostrovsky, R., Reyzin, L., Smith, A.: Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data. SIAM J. Comput. 38(1), 97–139 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Dolev, D., Dwork, C., Naor, M.: Nonmalleable Cryptography. SIAM J. Comput. 30(2), 391–437 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Döttling, N., Müller-Quade, J., Nascimento, A.C.A.: IND-CCA secure cryptography based on a variant of the LPN problem. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 485–503. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  16. 16.
    Dwork, C. (ed.): Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia, Canada, May 17-20. ACM (2008)Google Scholar
  17. 17.
    Gentry, C.: A Fully Homomorphic Encryption Scheme. Ph.D. thesis, Stanford University (2009), http://crypto.stanford.edu/craig
  18. 18.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Mitzenmacher (ed.) [33], pp. 169–178Google Scholar
  19. 19.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for hard lattices and new cryptographic constructions. In: Dwork (ed.) [16], pp. 197–206Google Scholar
  20. 20.
    Gilbert, H. (ed.): EUROCRYPT 2010. LNCS, vol. 6110. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  21. 21.
    Hofheinz, D., Kiltz, E.: Practical Chosen Ciphertext Secure Encryption from Factoring. In: Joux (ed.) [22], pp. 313–332Google Scholar
  22. 22.
    Joux, A. (ed.): EUROCRYPT 2009. LNCS, vol. 5479. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  23. 23.
    Justesen, J.: Class of constructive asymptotically good algebraic codes. IEEE Transactions on Information Theory 18(5), 652–656 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kawachi, A., Tanaka, K., Xagawa, K.: Multi-bit Cryptosystems Based on Lattice Problems. In: Okamoto, Wang (eds.) [34], pp. 315–329Google Scholar
  25. 25.
    Kiltz, E.: Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman. In: Okamoto, Wang (eds.) [34], pp. 282–297Google Scholar
  26. 26.
    Kiltz, E., Masny, D., Pietrzak, K.: Simple Chosen-Ciphertext Security from Low-Noise LPN. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 1–18. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  27. 27.
    Kiltz, E., Mohassel, P., O’Neill, A.: Adaptive trapdoor functions and chosen-ciphertext security. In: Gilbert (ed.) [20], pp. 673–692Google Scholar
  28. 28.
    Kiltz, E., Pietrzak, K., Stam, M., Yung, M.: A new randomness extraction paradigm for hybrid encryption. In: Joux (ed.) [22], pp. 590–609Google Scholar
  29. 29.
    Kurosawa, K., Desmedt, Y.G.: A New Paradigm of Hybrid Encryption Scheme. In: Franklin, M. (ed.) CRYPTO 2004. LNCS, vol. 3152, pp. 426–442. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  30. 30.
    Meurer, A.: A Coding-Theoretic Approach to Cryptanalysis (2012)Google Scholar
  31. 31.
    Micciancio, D., Mol, P.: Pseudorandom Knapsacks and the Sample Complexity of LWE Search-to-Decision Reductions. In: Rogaway (ed.) [41], pp. 465–484Google Scholar
  32. 32.
    Micciancio, D., Peikert, C.: Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In: Pointcheval, Johansson (eds.) [39], pp. 700–718Google Scholar
  33. 33.
    Mitzenmacher, M. (ed.): Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31-June 2. ACM (2009)Google Scholar
  34. 34.
    Okamoto, T., Wang, X. (eds.): PKC 2007. LNCS, vol. 4450. Springer, Heidelberg (2007)zbMATHGoogle Scholar
  35. 35.
    O’Neill, A., Peikert, C., Waters, B.: Bi-Deniable Public-Key Encryption. In: Rogaway (ed.) [41], pp. 525–542Google Scholar
  36. 36.
    Peikert, C.: Public-Key Cryptosystems from the Worst-Case Shortest Vector Problem: Extended Abstract. In: Mitzenmacher (ed.) [33], pp. 333–342Google Scholar
  37. 37.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A Framework for Efficient and Composable Oblivious Transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  38. 38.
    Peikert, C., Waters, B.: Lossy trapdoor functions and their applications. In: Dwork (ed.) [16], pp. 187–196Google Scholar
  39. 39.
    Pointcheval, D., Johansson, T. (eds.): EUROCRYPT 2012. LNCS, vol. 7237. Springer, Heidelberg (2012)zbMATHGoogle Scholar
  40. 40.
    Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In: STOC, pp. 84–93 (2005)Google Scholar
  41. 41.
    Rogaway, P. (ed.): CRYPTO 2011. LNCS, vol. 6841. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  42. 42.
    Rosen, A., Segev, G.: Chosen-Ciphertext Security via Correlated Products. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 419–436. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  43. 43.
    Shoup, V.: Using Hash Functions as a Hedge against Chosen Ciphertext Attack. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 275–288. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  44. 44.
    Stern, J.: A method for finding codewords of small weight. In: Wolfmann, J., Cohen, G. (eds.) Coding Theory 1988. LNCS, vol. 388, pp. 106–113. Springer, Heidelberg (1989)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Data Assurance and Communication Security Research CenterChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  3. 3.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations