Advertisement

On the Impacts of Mathematical Realization over Practical Security of Leakage Resilient Cryptographic Schemes

  • Guangjun FanEmail author
  • Yongbin Zhou
  • François-Xavier Standaert
  • Dengguo Feng
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9065)

Abstract

In real world, in order to transform an abstract and generic cryptographic scheme into actual physical implementation, one usually undergoes two processes: mathematical realization at algorithmic level and physical realization at implementation level. In black-box model (i.e. leakage-free setting), a cryptographic scheme can be mathematically realized without affecting its theoretical security as long as the mathematical components meet the required cryptographic properties. However, up to now, no previous work formally show that whether one can mathematically realize a leakage resilient cryptographic scheme in existent ways without affecting its practical security. Our results give a negative answer to this important question by introducing attacks against several kinds of mathematical realization of a practical leakage resilient cryptographic scheme. To be specific, there may exist a big gap between the theoretical tolerance leakage bits number and the practical tolerance leakage bits number of the same leakage resilient cryptographic scheme if the mathematical components in the mathematical realization are not provably secure in leakage setting.

Keywords

Physical Attacks Leakage Resilient Cryptography Mathematical Realization Physical Realization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Kiltz, E., Pietrzak, K.: Leakage Resilient ElGamal Encryption. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 595–612. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. [2]
    Dziembowski, S., Pietrzak, K.: Leakage-Resilient Cryptography, FOCS2008, pp. 293-302 (2008)Google Scholar
  3. [3]
    Micali, S., Reyzin, L.: Physically Observable Cryptography. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 278–296. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  4. [4]
    Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feldman, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold-boot attacks on encryption keys. Communications of the ACM - Security in the Browser 52(5), 91–98 (2009)CrossRefGoogle Scholar
  5. [5]
    Mangard, S., Popp, T., Gammel, B.M.: Side-Channel Leakage of Masked CMOS Gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. [6]
    Akavia, A., Goldwasser, S., Vaikuntanathan, V.: Simultaneous Hardcore Bits and Cryptography against Memory Attacks. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 474–495. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. [7]
    Naor, M., Segev, G.: Public-Key Cryptosystems Resilient to Key Leakage. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 18–35. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  8. [8]
    Cash, D.M., Ding, Y.Z., Dodis, Y., Lee, W., Lipton, R.J., Walfish, S.: Intrusion-Resilient Key Exchange in the Bounded Retrieval Model. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 479–498. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  9. [9]
    Alwen, J., Dodis, Y., Wichs, D.: Leakage-Resilient Public-Key Cryptography in the Bounded-Retrieval Model. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 36–54. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  10. [10]
    Dodis, Y., Haralambiev, K., López-Alt, A., Wichs, D.: Cryptography against Continuous Memory Attacks. In: FOCS 2010, pp. 511–520 (2010)Google Scholar
  11. [11]
    Lewko, A., Lewko, M., Waters, B.: How to Leak on Key Updates. In: STOC 2011, pp. 725–734 (2011)Google Scholar
  12. [12]
    ANSI X 9.17 (Revised), American National Standard for Financial Institution Key Management (Wholesale). American Bankers Association (1985)Google Scholar
  13. [13]
    National Institute for Standards and Technology, Digital Signature Standard. NIST FIPS PUB 186, U.S. Department of Commerce (1994)Google Scholar
  14. [14]
    Pietrzak, K.: A Leakage-Resilient Mode of Operation. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 462–482. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  15. [15]
    Keller, S.S.: NIST-Recommended Random Number Generator Based on ANSI X9.31 Appendix A.2.4 Using the 3-Key Triple DES and AES AlgorithmsGoogle Scholar
  16. [16]
    Kelsey, J., Schneier, B., Wagner, D., Hall, C.: Cryptanalytic attacks on pseudorandom number generators. In: Vaudenay, S. (ed.) FSE 1998. LNCS, vol. 1372, p. 168. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  17. [17]
  18. [18]
    Standaert, F.-X.: How Leaky Is an Extractor? In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 294–304. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  19. [19]
    Galindo, D., Vivek, S.: Limits of a conjecture on a leakage-resilient cryptogystem. Information Processing Letters 114(4), 192–196 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    Yu, Y., Standaert, F.-X., Pereira, O., Yung, M.: Practical Leakage-Resilient Pseudorandom Generators. In: CCS 2010 (2010)Google Scholar
  21. [21]
    Dodis, Y., Goldwasser, S., Tauman Kalai, Y., Peikert, C., Vaikuntanathan, V.: Public-Key Encryption Schemes with Auxiliary Inputs. In: Micciancio, D. (ed.) TCC 2010. LNCS, vol. 5978, pp. 361–381. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  22. [22]
    Dodis, Y., Kalai, Y.T., Lovett, S.: On Cryptography With Auxiliary Input, STOC2009Google Scholar
  23. [23]
    Menezes, A., van Oorschot, P., Vanstone, S.: Handbook of Applied Cryptography, Ch. 8, p. 296. CRC Press (1996)Google Scholar
  24. [24]
    Clavier, C., Joye, M.: Universal exponentiation algorithm. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 300–308. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  25. [25]
    Kocher, P.C.: Timing Attacks on Implementations of Diffie-Hellman, RSA, DSS, and Other Systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Guangjun Fan
    • 1
    Email author
  • Yongbin Zhou
    • 2
  • François-Xavier Standaert
    • 3
  • Dengguo Feng
    • 1
  1. 1.State Key Laboratory of Computer Science, Institute of SoftwareChinese Academy of SciencesBeijingChina
  2. 2.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina
  3. 3.ICTEAM/ELEN/Crypto GroupUniversité catholique de LouvainLouvain-la-NeuveBelgium

Personalised recommendations