Skip to main content

A New Lattice-Based Threshold Attribute-Based Signature Scheme

  • Conference paper
Information Security Practice and Experience (ISPEC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9065))

Abstract

In this paper, we present a new construction of attribute-based signature (ABS) scheme supporting flexible threshold predicates from lattices. The new construction is proved to be selective-predicate and adaptive-message unforgeable under chosen message attacks in random oracle model if the small integer solution (SIS) assumption holds. In addition, this scheme can also achieve privacy, which means the signature reveals nothing about the attributes or identity information about the real signer. Compared with existing lattice-based threshold ABS scheme, the new construction provides better efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures: Achieving attribute-privacy and collusion-resistance. IACR Cryptology ePrint Archive 2008, 328 (2008)

    Google Scholar 

  2. Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures and their application to anonymous credential systems. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its applications. In: ASIACCS 2010, pp. 60–69. ACM Press (2010)

    Google Scholar 

  4. Ge, A., Ma, C., Zhang, Z.: Attribute-based signature scheme with constant size signature in the standard model. IET Information Security 6(2), 47–54 (2012)

    Article  Google Scholar 

  5. Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  8. Wang, Q., Chen, S.: Attribute-based signature for threshold predicates from lattices. Security and Communication Networks (2014) (in press)

    Google Scholar 

  9. Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  10. Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)

    Chapter  Google Scholar 

  11. Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS, pp. 75–86 (2009)

    Google Scholar 

  12. Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM Journal of Computing 37(1), 267–302 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New Cryptographic Constructions. In: STOC, pp. 197–206. ACM (2008)

    Google Scholar 

  14. Ajtai, M.: Generating Hard Instances of Lattice Problems (Extended Abstract). In: STOC, pp. 99–108. ACM (1996)

    Google Scholar 

  15. Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality. In: STOC 2008 – Proc. 40th ACM Symposium on the Theory of Computing, ACM (2008)

    Google Scholar 

  16. Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp. 351–358. ACM, New York (2010)

    Google Scholar 

  17. Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently Secure Identification Schemes Based on the Worst-Case Hardness of Lattice Problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional encryption for threshold functions (or fuzzy IBE) from lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  19. Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  20. Stern, J.: A New Paradigm for Public Key Identification. IEEE Transactions on Information Theory 42(6), 1757–1768 (1996)

    Article  MATH  Google Scholar 

  21. Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  22. Pointcheval, D., Vaudenay, S.: On Provable Security for Digital Signature Algorithms. Technical Report LIENS-96-17, LIENS (October 1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingbin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Q., Chen, S., Ge, A. (2015). A New Lattice-Based Threshold Attribute-Based Signature Scheme. In: Lopez, J., Wu, Y. (eds) Information Security Practice and Experience. ISPEC 2015. Lecture Notes in Computer Science(), vol 9065. Springer, Cham. https://doi.org/10.1007/978-3-319-17533-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17533-1_28

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17532-4

  • Online ISBN: 978-3-319-17533-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics