A New Lattice-Based Threshold Attribute-Based Signature Scheme

  • Qingbin WangEmail author
  • Shaozhen Chen
  • Aijun Ge
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9065)


In this paper, we present a new construction of attribute-based signature (ABS) scheme supporting flexible threshold predicates from lattices. The new construction is proved to be selective-predicate and adaptive-message unforgeable under chosen message attacks in random oracle model if the small integer solution (SIS) assumption holds. In addition, this scheme can also achieve privacy, which means the signature reveals nothing about the attributes or identity information about the real signer. Compared with existing lattice-based threshold ABS scheme, the new construction provides better efficiency.


attribute-based signature threshold lattice random oracle model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures: Achieving attribute-privacy and collusion-resistance. IACR Cryptology ePrint Archive 2008, 328 (2008)Google Scholar
  2. 2.
    Shahandashti, S.F., Safavi-Naini, R.: Threshold attribute-based signatures and their application to anonymous credential systems. In: Preneel, B. (ed.) AFRICACRYPT 2009. LNCS, vol. 5580, pp. 198–216. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  3. 3.
    Li, J., Au, M.H., Susilo, W., Xie, D., Ren, K.: Attribute-based signature and its applications. In: ASIACCS 2010, pp. 60–69. ACM Press (2010)Google Scholar
  4. 4.
    Ge, A., Ma, C., Zhang, Z.: Attribute-based signature scheme with constant size signature in the standard model. IET Information Security 6(2), 47–54 (2012)CrossRefGoogle Scholar
  5. 5.
    Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone predicates in the standard model. In: Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.) PKC 2011. LNCS, vol. 6571, pp. 35–52. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  6. 6.
    Okamoto, T., Takashima, K.: Decentralized attribute-based signatures. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 125–142. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  7. 7.
    El Kaafarani, A., Ghadafi, E., Khader, D.: Decentralized traceable attribute-based signatures. In: Benaloh, J. (ed.) CT-RSA 2014. LNCS, vol. 8366, pp. 327–348. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  8. 8.
    Wang, Q., Chen, S.: Attribute-based signature for threshold predicates from lattices. Security and Communication Networks (2014) (in press)Google Scholar
  9. 9.
    Langlois, A., Ling, S., Nguyen, K., Wang, H.: Lattice-based group signature scheme with verifier-local revocation. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 345–361. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  10. 10.
    Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  11. 11.
    Alwen, J., Peikert, C.: Generating shorter bases for hard random lattices. In: STACS, pp. 75–86 (2009)Google Scholar
  12. 12.
    Micciancio, D., Regev, O.: Worst-case to average-case reductions based on Gaussian measures. SIAM Journal of Computing 37(1), 267–302 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New Cryptographic Constructions. In: STOC, pp. 197–206. ACM (2008)Google Scholar
  14. 14.
    Ajtai, M.: Generating Hard Instances of Lattice Problems (Extended Abstract). In: STOC, pp. 99–108. ACM (1996)Google Scholar
  15. 15.
    Gama, N., Nguyen, P.Q.: Finding short lattice vectors within Mordell’s inequality. In: STOC 2008 – Proc. 40th ACM Symposium on the Theory of Computing, ACM (2008)Google Scholar
  16. 16.
    Micciancio, D., Voulgaris, P.: A deterministic single exponential time algorithm for most lattice problems based on voronoi cell computations. In: Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, pp. 351–358. ACM, New York (2010)Google Scholar
  17. 17.
    Kawachi, A., Tanaka, K., Xagawa, K.: Concurrently Secure Identification Schemes Based on the Worst-Case Hardness of Lattice Problems. In: Pieprzyk, J. (ed.) ASIACRYPT 2008. LNCS, vol. 5350, pp. 372–389. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional encryption for threshold functions (or fuzzy IBE) from lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Ling, S., Nguyen, K., Stehlé, D., Wang, H.: Improved Zero-Knowledge Proofs of Knowledge for the ISIS Problem, and Applications. In: Kurosawa, K., Hanaoka, G. (eds.) PKC 2013. LNCS, vol. 7778, pp. 107–124. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  20. 20.
    Stern, J.: A New Paradigm for Public Key Identification. IEEE Transactions on Information Theory 42(6), 1757–1768 (1996)CrossRefzbMATHGoogle Scholar
  21. 21.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  22. 22.
    Pointcheval, D., Vaudenay, S.: On Provable Security for Digital Signature Algorithms. Technical Report LIENS-96-17, LIENS (October 1996)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.State Key Laboratory of Mathematical Engineering and Advanced ComputingZhengzhou Information Science and Technology InstituteZhengzhouChina

Personalised recommendations