Advertisement

Fully Secure Online/Offline Predicate and Attribute-Based Encryption

  • Pratish DattaEmail author
  • Ratna Dutta
  • Sourav Mukhopadhyay
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9065)

Abstract

This paper presents the first fully secure online/offline predicate encryption (PE) and attribute-based encryption (ABE) schemes that split the computation required for encryption into two phases: A preparation phase that does the vast majority of the work to encrypt a message before knowing the actual message and the attributes or access control policy that will be used. A second phase can then rapidly assemble a ciphertext when the specifications become known. Our PE schemes support generalized inner-product predicates, while, our ABE scheme supports non-monotone access structures. All the proposed schemes are unbounded in the sense that the size of the public parameters is constant. The security of all the schemes are based on the Decisional Linear assumption. The best part of our constructions is that they exhibit better online performance despite of providing stronger security guarantees compared to the existing work.

Keywords

Predicate encryption attribute based encryption online/offline encryption generalized inner-product dual pairing vector spaces 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Hohenberger, S., Waters, B.: Online/Offline attribute-based encryption. In: Krawczyk, H. (ed.) PKC 2014. LNCS, vol. 8383, pp. 293–310. Springer, Heidelberg (2014)Google Scholar
  2. 2.
    Katz, J., Sahai, A., Waters, B.: Predicate encryption supporting disjunctions, polynomial equations, and inner products. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 146–162. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., Waters, B.: Fully secure functional encryption: Attribute-based encryption and (Hierarchical) inner product encryption. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 62–91. Springer, Heidelberg (2010)Google Scholar
  4. 4.
    Lewko, A., Waters, B.: Unbounded HIBE and attribute-based encryption. In: Paterson, K.G. (ed.) EUROCRYPT 2011. LNCS, vol. 6632, pp. 547–567. Springer, Heidelberg (2011)Google Scholar
  5. 5.
    Okamoto, T., Takashima, K.: Hierarchical predicate encryption for inner-products. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 214–231. Springer, Heidelberg (2009)Google Scholar
  6. 6.
    Okamoto, T., Takashima, K.: Fully secure functional encryption with general relations from the decisional linear assumption. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 191–208. Springer, Heidelberg (2010)Google Scholar
  7. 7.
    Okamoto, T., Takashima, K.: Adaptively attribute-hiding (Hierarchical) inner product encryption. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 591–608. Springer, Heidelberg (2012)Google Scholar
  8. 8.
    Okamoto, T., Takashima, K.: Fully secure unbounded inner-product and attribute-based encryption. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 349–366. Springer, Heidelberg (2012)Google Scholar
  9. 9.
    Rouselakis, Y., Waters, B.: Practical constructions and new proof methods for large universe attribute-based encryption. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 463–474. ACM (2013)Google Scholar
  10. 10.
    Sahai, A., Waters, B.: Fuzzy identity-based encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Pratish Datta
    • 1
    Email author
  • Ratna Dutta
    • 1
  • Sourav Mukhopadhyay
    • 1
  1. 1.Department of MathematicsIndian Institute of Technology KharagpurKharagpurIndia

Personalised recommendations