Advertisement

Adaptive-ID Secure Revocable Identity-Based Encryption from Lattices via Subset Difference Method

  • Shantian ChengEmail author
  • Juanyang Zhang
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9065)

Abstract

In view of the expiration or reveal of user’s private credential (or private key) in a realistic scenario, identity-based encryption (IBE) schemes with an efficient key revocation mechanism, or for short, revocable identity-based encryption (RIBE) schemes, become prominently significant. In this paper, we present an RIBE scheme from lattices by combining two Agrawal et al.’s IBE schemes with the subset difference (SD) method. Our scheme is secure against adaptive identity-time attacks in the standard model under the learning with errors (LWE) assumption. In particular, our scheme serves as one solution to the challenge posed by Chen et al. (ACISP ’12).

Keywords

Revocable identity-based encryption Lattices Subset difference method Adaptive security Standard model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 553–572. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Agrawal, S., Boneh, D., Boyen, X.: Efficient Lattice (H)IBE in the Standard Model. Full version of [1], http://crypto.stanford.edu/~dabo/pubs/papers/latticebb.pdf
  3. 3.
    Agrawal, S., Boneh, D., Boyen, X.: Lattice Basis Delegation in Fixed Dimension and Shorter-Ciphertext Hierarchical IBE. In: Rabin, T. (ed.) CRYPTO 2010. LNCS, vol. 6223, pp. 98–115. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  4. 4.
    Agrawal, S., Boyen, X., Vaikuntanathan, V., Voulgaris, P., Wee, H.: Functional Encryption for Threshold Functions (or Fuzzy IBE) from Lattices. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 280–297. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  5. 5.
    Ajtai, M.: Generating Hard Instances of the Short Basis Problem. In: Wiedermann, J., Van Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 1–9. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  6. 6.
    Alwen, J., Peikert, C.: Generating Shorter Bases for Hard Random Lattices. Theory of Computing Systems 48(3), 535–553 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Boldyreva, A., Goyal, V., Kumar, V.: Identity-Based Encryption with Efficient Revocation. In: Ning, P., Syverson, P.F., Jha, S. (eds.) CCS 2008, pp. 417–426. ACM (2008)Google Scholar
  8. 8.
    Boneh, D., Boyen, X.: Efficient Selective-ID Secure Identity-Based Encryption Without Random Oracles. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 223–238. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    Boneh, D., Franklin, M.: Identity-Based Encryption from the Weil Pairing. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 213–229. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  10. 10.
    Boneh, D., Gentry, C., Hamburg, M.: Space-Efficient Identity Based Encryption Without Pairings. In: FOCS 2007, pp. 647–657. IEEE (2007)Google Scholar
  11. 11.
    Chen, J., Lim, H.W., Ling, S., Wang, H., Nguyen, K.: Revocable Identity-Based Encryption from Lattices. In: Susilo, W., Mu, Y., Seberry, J. (eds.) ACISP 2012. LNCS, vol. 7372, pp. 390–403. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Cheng, S., Zhang, J.: Adaptive-ID Secure Revocable Identity-Based Encryption from Lattices via Subset Difference Method. Cryptology eprint Archive Report 2015/098 (2015), http://eprint.iacr.org/2015/098
  13. 13.
    Cocks, C.: An Identity Based Encryption Scheme Based on Quadratic Residues. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 360–363. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  14. 14.
    Gama, N., Nguyen, P.Q.: Finding Short Lattice Vectors within Mordell’s Inequality. In: Dwork, C. (ed.) STOC 2008, pp. 207–216. ACM (2008)Google Scholar
  15. 15.
    Gentry, C., Peikert, C., Vaikuntanathan, V.: Trapdoors for Hard Lattices and New Cryptographic Constructions. In: Dwork, C. (ed.) STOC 2008, pp. 197–206. ACM (2008)Google Scholar
  16. 16.
    Lee, K., Lee, D.H., Park, J.H.: Efficient Revocable Identity-Based Encryption via Subset Difference Methods. Cryptology ePrint Archive, Report 2014/132 (2014), http://eprint.iacr.org/2014/132
  17. 17.
    Libert, B., Vergnaud, D.: Adaptive-ID Secure Revocable Identity-Based Encryption. In: Fischlin, M. (ed.) CT-RSA 2009. LNCS, vol. 5473, pp. 1–15. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  18. 18.
    Micciancio, D., Peikert, C.: Trapdoors for Lattices: Simpler, Tighter, Faster, Smaller. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 700–718. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  19. 19.
    Micciancio, D., Regev, O.: Worst-Case to Average-Case Reductions Based on Gaussian Measures. SIAM Journal on Computing 37(1), 267–302 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Naor, D., Naor, M., Lotspiech, J.: Revocation and Tracing Schemes for Stateless Receivers. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 41–62. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  21. 21.
    Regev, O.: On Lattices, Learning with Errors, Random Linear Codes, and Cryptography. In: Gabow, H.N., Fagin, R. (eds.) STOC 2005, pp. 84–93. ACM (2005)Google Scholar
  22. 22.
    Sahai, A., Waters, B.: Fuzzy Identity-Based Encryption. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 457–473. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  23. 23.
    Schnorr, C.: A Hierarchy of Polynomial Time Lattice Basis Reduction Algorithms. Theoretical Computer Science 53, 201–224 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Seo, J.H., Emura, K.: Revocable Identity-Based Cryptosystem Revisited: Security Models and Constructions. IEEE Transactions on Information Forensics and Security 9(7), 1193–1205 (2014)CrossRefGoogle Scholar
  25. 25.
    Shamir, A.: Identity-Based Cryptosystems and Signature Schemes. In: Blakely, G.R., Chaum, D. (eds.) CRYPTO 1984. LNCS, vol. 196, pp. 47–53. Springer, Heidelberg (1985)CrossRefGoogle Scholar
  26. 26.
    Waters, B.: Efficient Identity-Based Encryption Without Random Oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  27. 27.
    Waters, B.: Dual System Encryption: Realizing Fully Secure IBE and HIBE under Simple Assumptions. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 619–636. Springer, Heidelberg (2009)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Division of Mathematical Sciences, School of Physical and Mathematical SciencesNanyang Technological UniversityNanyang LinkSingapore

Personalised recommendations