A Benchmark Suite for Hybrid Systems Reachability Analysis

  • Xin Chen
  • Stefan SchuppEmail author
  • Ibtissem Ben Makhlouf
  • Erika Ábrahám
  • Goran Frehse
  • Stefan Kowalewski
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9058)


Since about two decades, formal methods for continuous and hybrid systems enjoy increasing interest in the research community. A wide range of analysis techniques were developed and implemented in powerful tools. However, the lack of appropriate benchmarks make the testing, evaluation and comparison of those tools difficult. To support these processes and to ease exchange and repeatability, we present a manifold benchmark suite for the reachability analysis of hybrid systems. Detailed model descriptions, classification schemes, and experimental evaluations help to find the right models for a given purpose.


Model Check Hybrid System Benchmark Suite Hybrid Automaton Reachability Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Althoff, M., Dolan, J.M.: Online verification of automated road vehicles using reachability analysis. IEEE Trans. on Robotics 30(4), 903–918 (2014)CrossRefGoogle Scholar
  2. 2.
    Althoff, M., Frehse, G.: Benchmarks of the Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH) (2014).
  3. 3.
    Ben Makhlouf, I., Diab, H., Kowalewski, S.: Safety verification of a controlled cooperative platoon under loss of communication using zonotopes. In: Proc. of ADHS 2012, pp. 333–338. IFAC-PapersOnLine (2012)Google Scholar
  4. 4.
  5. 5.
    Bouissou, O., Chapoutot, A., Djoudi, A.: Enclosing temporal evolution of dynamical systems using numerical methods. In: Brat, G., Rungta, N., Venet, A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 108–123. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  6. 6.
    Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 258–263. Springer, Heidelberg (2013) CrossRefGoogle Scholar
  7. 7.
    Collins, P., Bresolin, D., Geretti, L., Villa, T.: Computing the evolution of hybrid systems using rigorous function calculus. In: Proc. of ADHS 2012, pp. 284–290. IFAC-PapersOnLine (2012)Google Scholar
  8. 8.
    Fehnker, A., Ivančić, F.: Benchmarks for hybrid systems verification. In: Alur, R., Pappas, G.J. (eds.) HSCC 2004. LNCS, vol. 2993, pp. 326–341. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  9. 9.
    Fisher, M.: A semiclosed-loop algorithm for the control of blood glucose levels in diabetics. IEEE Trans. on Biomedical Engineering 38(1), 57–61 (1991)CrossRefGoogle Scholar
  10. 10.
    Fränzle, M., Herde, C., Ratschan, S., Schubert, T., Teige, T.: Efficient solving of large non-linear arithmetic constraint systems with complex Boolean structure. Journal on Satisfiability, Boolean Modeling and Computation 1, 209–236 (2007)Google Scholar
  11. 11.
    Frehse, G., et al.: SpaceEx: scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  12. 12.
    Gao, S.: Computable Analysis, Decision Procedures, and Hybrid Automata: A New Framework for the Formal Verification of Cyber-Physical Systems. Ph.D. thesis, Carnegie Mellon University (2012)Google Scholar
  13. 13.
    Hespanha, J., Morse, A.: Stabilization of nonholonomic integrators via logic-based switching. Automatica 35(3), 385–393 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    HyCreate: A tool for overapproximating reachability of hybrid automata.
  15. 15.
    Izhikevich, E.: Dynamical Systems in Neuroscience. MIT Press (2007)Google Scholar
  16. 16.
    Le Guernic, C., Girard, A.: Reachability analysis of linear systems using support functions. Nonlinear Analysis: Hybrid Systems 4(2), 250–262 (2010)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Platzer, A., Quesel, J.-D.: KeYmaera: a hybrid theorem prover for hybrid systems (system description). In: Armando, A., Baumgartner, P., Dowek, G. (eds.) IJCAR 2008. LNCS, vol. 5195, pp. 171–178. Springer, Heidelberg (2008) CrossRefGoogle Scholar
  18. 18.
    Ratschan, S., She, Z.: Safety verification of hybrid systems by constraint propagation based abstraction refinement. In: Morari, M., Thiele, L. (eds.) HSCC 2005. LNCS, vol. 3414, pp. 573–589. Springer, Heidelberg (2005) CrossRefGoogle Scholar
  19. 19.
    Rewienski, M., White, J.: A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems 22(2), 155–170 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  • Xin Chen
    • 1
  • Stefan Schupp
    • 1
    Email author
  • Ibtissem Ben Makhlouf
    • 1
  • Erika Ábrahám
    • 1
  • Goran Frehse
    • 2
  • Stefan Kowalewski
    • 1
  1. 1.RWTH Aachen UniversityAachenGermany
  2. 2.VerimagGièresFrance

Personalised recommendations