Advertisement

Reachability Analysis Using Extremal Rates

  • Andrew N. FisherEmail author
  • Chris J. Myers
  • Peng Li
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 9058)

Abstract

General hybrid systems can be difficult to verify due to their generality. To reduce the complexity, one often specializes to hybrid systems where the complexity is more manageable. If one reduces the modeling formalism to ones where the continuous variables have a single rate, then it may be possible to use the methods of zones to find the reachable state space. Zones are a restricted class of polyhedra formed by considering the intersections of half-planes defined by two variable constraints. Due to their simplicity, zones have simpler, more efficient methods of manipulation than more general polyhedral classes, though they are less accurate. This paper extends the method of zones to labeled Petri net (LPN) models with continuous variables that evolve over a range of rates.

Keywords

Range of rates LPNs Zones Difference bound matrices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T.A., Ho, P.H., Nicollin, X., Olivero, A., Sifakis, J., Yovine, S.: The algorithmic analysis of hybrid systems. Theoretical Computer Science 138, 3–34 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  2. 2.
    Alur, R., Courcoubeti, C., Henzinger, T.A., Ho, P.H.: Hybrid automata: An algorithmic approach to the specification and verification of hybrid systems. In: Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (eds.) Hybrid Systems. LNCS, vol. 736, pp. 209–229. Springer, Heidelberg (1993)CrossRefGoogle Scholar
  3. 3.
    Asarin, E., Dang, T., Maler, O.: The \(\mathbf{d/dt}\) tool for verification of hybrid systems. In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 365–370. Springer, Heidelberg (2002) CrossRefGoogle Scholar
  4. 4.
    Bengtsson, J.E., Yi, W.: Timed Automata: Semantics, Algorithms and Tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) Lectures on Concurrency and Petri Nets. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004) CrossRefGoogle Scholar
  5. 5.
    Cassez, F., Larsen, K.G.: The impressive power of stopwatches. In: Palamidessi, C. (ed.) CONCUR 2000. LNCS, vol. 1877, p. 138. Springer, Heidelberg (2000) CrossRefGoogle Scholar
  6. 6.
    Dill, D.L.: Timing assumptions and verification of finite-state concurrent systems. In: Sifakis, J. (ed.) Automatic Verification Methods for Finite State Systems. LNCS, vol. 407, pp. 197–212. Springer, Heidelberg (1990) CrossRefGoogle Scholar
  7. 7.
    Fisher, A.N., Myers, C.J., Li, P.: Ranges of rates (2013) [Online; accessed 31-December-2014]. http://www.async.ece.utah.edu/~andrewf/ranges_of_rates.pdf
  8. 8.
    Frehse, G., Le Guernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel, O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: Scalable verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 379–395. Springer, Heidelberg (2011) CrossRefGoogle Scholar
  9. 9.
    Frehse, G., Krogh, B., Rutenbar, R.: Verifying analog oscillator circuits using forward/backward abstraction refinement. In: DATE 2006 Proceedings of the Design, Automation and Test in Europe, vol. 1, p. 6, March 2006Google Scholar
  10. 10.
    Frehse, G.: Spaceex (2012) [Online; accessed 31-December-2012]. http://spaceex.imag.fr/documentation/publications
  11. 11.
    Henzinger, T.A., Kopke, P.W., Puri, A., Varaiya, P.: What’s decidable about hybrid automata? In: Symposium on Theory of Computing, pp. 373–382. Association for Computing Machinery (1995). http://dl.acm.org/citation.cfm?id=225162
  12. 12.
    Little, S., Seegmiller, N., Walter, D., Myers, C., Yoneda, T.: Verification of analog/mixed-signal circuits using labeled hybrid petri nets. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 30, 617–630 (2011)CrossRefGoogle Scholar
  13. 13.
    Little, S., Walter, D., Jones, K., Myers, C., Sen, A.: Analog/mixed-signal circuit verification using models generated from simulation traces. The Inernational Journal of Foundations of Computer Science 21(2), 191–210 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Little, S.R.: Efficient modeling and verification of analog/mixed-signal circuits using labeled hybrid petri nets. Ph.D. thesis, University of Utah (2008)Google Scholar
  15. 15.
    Myers, C.: Asynchronous Circuit Design. John Wiley & Sons, July 2001Google Scholar
  16. 16.
    Puri, A., Borkar, V., Varaiya, P.: \(\epsilon \)-approximation of differential inclusions. In: Alur, R., Sontag, E.D., Henzinger, T.A. (eds.) HS 1995. LNCS, vol. 1066. Springer, Heidelberg (1996) CrossRefGoogle Scholar
  17. 17.
    Silva, B.I., Krogh, B.H.: Formal verification of hybrid systems using checkmate: A case study. American Control Conference 3, 1679–1683 (2000)Google Scholar
  18. 18.
    Yan, C., Greenstreet, M.: Faster projection based methods for circuit level verification. In: ASPDAC 2008 Design Automation Conference, Asia and South Pacific, pp. 410–415 (2008)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of UtahSalt Lake CityUSA
  2. 2.Texas A&M UniversityCollege StationUSA

Personalised recommendations