Skip to main content

Efficient Guiding Strategies for Testing of Temporal Properties of Hybrid Systems

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2015)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 9058))

Included in the following conference series:

Abstract

Techniques for testing cyberphysical systems (CPS) currently use a combination of automatic directed test generation and random testing to find undesirable behaviors. Existing techniques can fail to efficiently identify bugs because they do not adequately explore the space of system behaviors. In this paper, we present an approach that uses the rapidly exploring random trees (RRT) technique to explore the state-space of a CPS. Given a Signal Temporal Logic (STL) requirement, the RRT algorithm uses two quantities to guide the search: The first is a robustness metric that quantifies the degree of satisfaction of the STL requirement by simulation traces. The second is a metric for measuring coverage for a dense state-space, known as the star discrepancy measure. We show that our approach scales to industrial-scale CPSs by demonstrating its efficacy on an automotive powertrain control system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahmadyan, S.N., Kumar, J.A., Vasudevan, S.: Runtime verification of nonlinear analog circuits using incremental time-augmented rrt algorithm. In: Design, Automation Test in Europe Conference Exhibition (DATE), pp. 21–26, March 2013

    Google Scholar 

  2. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Beck, J., Chen, W.: Irregularities of Distribution. Cambridge Studies in Social and Emotional Development. Cambridge University Press (1987)

    Google Scholar 

  4. Bhatia, A., Maly, M., Kavraki, E., Vardi, M.: Motion planning with complex goals. IEEE Robotics Automation Magazine 18(3), 55–64 (2011)

    Article  Google Scholar 

  5. Dang, T., Donzé, A., Maler, O., Shalev, N.: Sensitive state-space exploration. In: CDC, pp. 4049–4054 (2008)

    Google Scholar 

  6. Dang, T., Nahhal, T.: Coverage-guided test generation for continuous and hybrid systems. Formal Methods in System Design 34(2), 183–213 (2009)

    Article  MATH  Google Scholar 

  7. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  8. Donzé, A., Maler, O.: Robust satisfaction of temporal logic over real-valued signals. In: Chatterjee, K., Henzinger, T.A. (eds.) FORMATS 2010. LNCS, vol. 6246, pp. 92–106. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  9. Donzé, A., Ferrère, T., Maler, O.: Efficient robust monitoring for STL. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 264–279. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  10. Fainekos, G., Sankaranarayanan, S., Ueda, K., Yazarel, H.: Verification of automotive control applications using s-taliro. In: ACC (2012)

    Google Scholar 

  11. Jin, X., Deshmukh, J.V., Kapinski, J., Ueda, K., Butts, K.: Powertrain control verification benchmark. In: HSCC (2014)

    Google Scholar 

  12. Jin, X., Donzé, A., Deshmukh, J., Seshia, S.: Mining requirements from closed-loop control models. In: HSCC (2013)

    Google Scholar 

  13. Karaman, S., Frazzoli, E.: Linear temporal logic vehicle routing with applications to multi-UAV mission planning. Int. J. of Robust and Nonlinear Control 21(12), 1372–1395 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  14. Karaman, S., Frazzoli, E.: Sampling-based algorithms for optimal motion planning. Int. J. of Robotics Research 30(7), 846–894 (2011)

    Article  Google Scholar 

  15. Kim, J., Esposito, J.M., Kumar, V.: An rrt-based algorithm for testing and validating multi-robot controllers. In: RSS, pp. 249–256 (2005)

    Google Scholar 

  16. Kloetzer, M., Belta, C.: A fully automated framework for control of linear systems from temporal logic specifications. IEEE Trans. Auto. Control 53(1), 287–297 (2008)

    Article  MathSciNet  Google Scholar 

  17. Kong, Z., Jones, A., Ayala, A.M., Gol, E.A., Belta, C.: Temporal logic inference for classification and prediction from data. In: HSCC (2014)

    Google Scholar 

  18. LaValle, S.M.: Planning Algorithms, chap. 5. Cambridge University Press, Cambridge, U.K. (2006). http://planning.cs.uiuc.edu/

  19. Lavalle, S.M., Kuffner, J.J., Jr.: Rapidly-exploring random trees: progress and prospects. In: Algorithmic and Computational Robotics: New Directions. pp. 293–308 (2000)

    Google Scholar 

  20. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS 2004 and FTRTFT 2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  21. Mathworks, T.: Simulink design verifier. http://www.mathworks.com/products/sldesignverifier/

  22. Mount, D.M., Arya, S.: Ann: a library for approximate nearest neighbor searching. http://www.cs.umd.edu/~mount/ANN/

  23. Plaku, E., Kavraki, L., Vardi, M.: Hybrid systems: from verification to falsification by combining motion planning and discrete search. Formal Methods in System Design 34(2), 157–182 (2009)

    Article  MATH  Google Scholar 

  24. Systems, R.: Model based testing and validation with reactis, reactive systems inc. http://www.reactive-systems.com

  25. Yang, H., Hoxha, B., Fainekos, G.: Querying parametric temporal logic properties on embedded systems. In: Nielsen, B., Weise, C. (eds.) ICTSS 2012. LNCS, vol. 7641, pp. 136–151. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Dreossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V. (2015). Efficient Guiding Strategies for Testing of Temporal Properties of Hybrid Systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds) NASA Formal Methods. NFM 2015. Lecture Notes in Computer Science(), vol 9058. Springer, Cham. https://doi.org/10.1007/978-3-319-17524-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17524-9_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17523-2

  • Online ISBN: 978-3-319-17524-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics