Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 2140))

  • 844 Accesses

Abstract

I give a thorough introduction to the global theory of, possibly singular, symplectic complex spaces. The spaces are assumed to be of Kähler type for the most part. My presentation focuses on the study of proper and flat deformations. The corresponding local theory of symplectic singularities is hardly touched upon. The key results are a local Torelli theorem on the second cohomology, which generalizes the local Torelli theorem for irreducible symplectic complex manifolds to potentially singular spaces, as well as an analogous generalization of the Fujiki relation. Moreover, an entire section is devoted to developing the Beauville-Bogomolov quadratic form in the generalized context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Less frequently the Beauville-Bogomolov-Fujiki form.

  2. 2.

    I slightly deviate from Beauville’s original formula [2, p. 772] by writing \(w^{r-1}\bar{w}^{r-1}\) instead of \((w\bar{w})^{r-1}\) as the former has a more natural feel in calculations.

  3. 3.

    I should note that Grauert [12] calls “versell” what we call “semi-universal.” This might be confusing given that nowadays people use the English word “versal” as a synonym for “complete,” which is a condition strictly weaker than that of semi-universality. In other words, Grauert’s (German) “versell” is not equivalent to, but strictly stronger than the contemporary (English) “versal.”

References

  1. C. Bănică, O. Stănăşilă, Algebraic Methods in the Global Theory of Complex Spaces. Editura Academiei, Bucharest (Wiley, London, 1976), p. 296

    Google Scholar 

  2. A. Beauville, Variétés kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18, 755–782 (1983)

    MATH  MathSciNet  Google Scholar 

  3. A. Beauville, Symplectic singularities. Invent. Math. 139(3), 541–549 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Bingener, On deformations of Kähler spaces I. Math. Z. 182(4), 505–535 (1983). doi:10.1007/BF01215480

    Article  MATH  MathSciNet  Google Scholar 

  5. F.A. Bogomolov, On the decomposition of Kähler manifolds with trivial canonical class. Math. USSR. Sb. 22(4), 580–583 (1974)

    Article  Google Scholar 

  6. F.A. Bogomolov, Hamiltonian Kähler manifolds. Sov. Math. Dokl. 19, 1462–1465 (1978)

    MATH  Google Scholar 

  7. B. Conrad, Grothendieck Duality and Base Change. Lecture Notes in Mathematics, vol. 1750 (Springer, Heidelberg, 2000), pp. vi+296. doi:10.1007/b75857

    Google Scholar 

  8. R. Elkik, Singularités rationnelles et déformations. Invent. Math. 47(2) 139–147 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  9. G. Fischer, Complex Analytic Geometry. Lecture Notes in Mathematics, vol. 538 (Springer, Heidelberg, 1976), pp. vii+201

    Google Scholar 

  10. H. Flenner, Extendability of differential forms on non-isolated singularities. Invent. Math. 94(2), 317–326 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  11. A. Fujiki, On the de Rham Cohomology Group of a Compact Kähler smplectic manifold, in Algebraic Geometry, Sendai, 1985. Adv. Stud. Pure Math., vol. 10 (Amsterdam, North-Holland, 1987), pp. 105–165

    Google Scholar 

  12. H. Grauert, Der Satz von Kuranishi für kompakte komplexe Räume Invent. Math. 25 107–142 (1974)

    MATH  MathSciNet  Google Scholar 

  13. H. Grauert, R. Remmert, Coherent Analytic Seaves. Grundlehren der mathematischen Wissenschaften, vol. 265 (Springer, Heidelberg, 1984)

    Google Scholar 

  14. G.-M. Greuel, C. Lossen, E. Shustin, Introduction to Singularities and Deformations. Springer Monographs in Mathematics (Springer, Heidelberg, 2007)

    Google Scholar 

  15. D. Huybrechts, Compact hyperkähler manifolds: basic results. Invent. Math. 135(1), 63–113 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Huybrechts, Complex Geometry: An Introduction (Universitext, Springer, Heidelberg, 2005)

    Google Scholar 

  17. L. Illusie, Complexe Cotangent et Déformations I. Lecture Notes in Mathematics, vol. 239 (Springer, Heidelberg 1971), pp. xv+355

    Google Scholar 

  18. M. Kneser, R. Scharlau, Quadratische Formen (Springer, Heidelberg, 2002)

    Book  MATH  Google Scholar 

  19. J. Kollár, S. Mori, Classification of three-dimensional flips. J. Am. Math. Soc. 5(3), 533–703 (1992). doi:10.2307/2152704

    Article  MATH  Google Scholar 

  20. S. Lang, Algebra, 3rd rev. edn. Graduate Texts in Mathematics, vol. 211 (Springer, New York, 2002), pp. xvi+914. doi:10.1007/978-1-4613-0041-0

  21. D. Matsushita, Fujiki relation on symplectic varieties (2001). arXiv: math.AG/0109165

    Google Scholar 

  22. B.G. Moishezon, Singular Kählerian spaces, in Manifolds—Tokyo 1973 (Proc. Internat. Conf., Tokyo, 1973) (University of Tokyo Press, Tokyo, 1975), pp. 343–351

    Google Scholar 

  23. T. Muir, A Treatise on the Theory of Determinants (Dover, New York 1960), pp. vii+766

    Google Scholar 

  24. Y. Namikawa, Deformation theory of singular symplectic n-folds. Math. Ann. 319, 597–623 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Y. Namikawa, Extension of 2-forms and symplectic varieties. J. Reine Angew. Math. 539, 123–147 (2001)

    MATH  MathSciNet  Google Scholar 

  26. Y. Namikawa, On deformations of \(\mathbb{Q}\)-factorial symplectic varieties. J. Reine Angew. Math. 599, 97–110 (2006)

    MATH  MathSciNet  Google Scholar 

  27. V.P. Palamodov, Deformations of complex spaces. Uspehi Mat. Nauk 31(189), 3, 129–194 (1976)

    Google Scholar 

  28. V.P. Palamodov, Deformations of complex spaces, in Several Complex Variables IV: Algebraic Aspects of Complex Analysis. Encyclopaedia of Mathematical Sciences (Springer, Heidelberg, 1990), pp. 105–194

    Google Scholar 

  29. E. Sernesi, Deformations of Algebraic Schemes. Grundlehren der mathematischen Wissenschaften, vol. 334 (Springer, Heidelberg 2006), pp. xii+339

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kirschner, T. (2015). Symplectic Complex Spaces. In: Period Mappings with Applications to Symplectic Complex Spaces. Lecture Notes in Mathematics, vol 2140. Springer, Cham. https://doi.org/10.1007/978-3-319-17521-8_3

Download citation

Publish with us

Policies and ethics