Skip to main content

Probabilistic Collision Avoidance for Long-term Space Encounters via Risk Selection

  • Conference paper

Abstract

This paper deals with collision avoidance between two space objects involved in a long-term encounter, assuming Keplerian linearized dynamics. The primary object is an active spacecraft - able to perform propulsive maneuvers - originally set on a reference orbit. The secondary object - typically an orbital debris - is passive and represents a threat to the primary. The collision avoidance problem addressed in this paper aims at computing a fuel-optimal, finite sequence of impulsive maneuvers performed by the active spacecraft such that instantaneous collision probability remains below a given threshold over the encounter and that the primary object goes back to its reference trajectory at the end of the mission. Two successive relaxations are used to turn the original hard chance-constrained problem into a deterministic version that can be solved using mixed-integer linear programming solvers. An additional contribution is to propose a new algorithm to compute probabilities for 3-D Gaussian random variables to lie in Euclidean balls, enabling us to numerically validate the computed maneuvers by efficiently evaluating the resulting instantaneous collision probabilities.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alfano, S.: A numerical implementation of spherical objet collision probability. Journal of Astronautical Sciences 53(1) (January-March 2005)

    Google Scholar 

  2. Bertsimas, D., Tsitsiklis, J.N.: Introduction to linear optimization. AIAA. Athena Scientific, Belmont, Massachusetts (1997)

    Google Scholar 

  3. Blackmore, L., Li, H., Williams, B.: A probabilistic approach to optimal robust path planning with obstacles. In: American Control Conference, Minneapolis, MA (June 2006)

    Google Scholar 

  4. Blackmore, L., Ono, M., Williams, B.: Chance-constrained optimal path planning with obstacles. IEEE Transactions on Robotics 27(6), 1080–1094 (2011)

    Article  Google Scholar 

  5. Chan, F.K.: Spacecraft Collision Probability. AIAA. The Aerospace Press (2008)

    Google Scholar 

  6. Chevillard, S., Mezzarobba, M.: Multiple-Precision Evaluation of the Airy Ai Function with Reduced Cancellation. In: Nannarelli, A., Seidel, P.-M., Tang, P.T.P. (eds.) 21st IEEE SYMPOSIUM on Computer Arithmetic, Los Alamitos, CA, April 2013, pp. 175–182. IEEE Computer Society (2013)

    Google Scholar 

  7. Gawronski, W., Müller, J., Reinhard, M.: Reduced cancellation in the evaluation of entire functions and applications to the error function. SIAM Journal on Numerical Analysis 45(6), 2564–2576 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  8. Gurobi Optimization, Inc., Gurobi Optimizer Reference Manual (2014), http://www.gurobi.com

  9. Lasserre, J.B., Zeron, E.S.: Solving a class of multivariate integration problems via laplace techniques. Applicationes Mathematicae (2001)

    Google Scholar 

  10. Mueller, J.B., Larsson, R.: Collision avoidance maneuver planning with robust optimization. In: 7th International ESA Conference on Guidance, Navigation and Control Systems (2008)

    Google Scholar 

  11. Patera, R.P., Peterson, G.E.: Space vehicle maneuver method to lower collision risk to an acceptable level. Journal of Guidance, Control and Dynamics 26(2) (March-April 2003)

    Google Scholar 

  12. Richards, A.R., Schouwenaars, T., How, J.P., Feron, E.: Spacecraft trajectory planning with avoidance constraints using mixed-integer linear programming. Journal of Guidance, Control and Dynamics 25(4) (August 2002)

    Google Scholar 

  13. Salvy, B.: D-finiteness: Algorithms and applications. In: Kauers, M. (ed.) ISSAC 2005: Proceedings of the 18th International Symposium on Symbolic and Algebraic Computation, Beijing, China, July 24-27, pp. 2–3. ACM Press (2005) Abstract for an invited talk

    Google Scholar 

  14. Salvy, B., Zimmermann, P.: Gfun: a Maple package for the manipulation of generating and holonomic functions in one variable. ACM Transactions on Mathematical Software 20(2), 163–177 (1994)

    Article  MATH  Google Scholar 

  15. Sánchez-Ortiz, N., Belló-Mora, M., Klinkrad, H.: Collision avoidance manoeuvres during spacecraft mission lifetime: Risk reduction and required δv. Advances in Space Research 38(9), 2107–2116 (2006)

    Article  Google Scholar 

  16. Serra, R., Arzelier, D., Lasserre, J.-B., Joldes, M., Rondepierre, A.: A new method to compute the probability of collision for short-term space encounters. In: Proceedings of AAS/AIAA Astrodynamics Specialist Conference, San Diego, California, USA (August 2014)

    Google Scholar 

  17. Slater, G.L., Byram, S.M., Williams, T.W.: Collision avoidance for satellites in formation flight. Journal of Guidance, Control, and Dynamics 29(5), 1140–1146 (2006)

    Article  Google Scholar 

  18. Tschauner, J., Hempel, P.: Optimale beschleunigungs-programme fur des rendezvous manover. Astronautica Acta 5-6, 296–307 (1964)

    Google Scholar 

  19. Widder, D.V.: An introduction to transform theory. Academic Press New York (1971)

    Google Scholar 

  20. Yamanaka, K., Ankersen, F.: New state transition matrix for relative motion on an arbitrary elliptical orbit. Journal of Guidance, Control and Dynamics 25(1) (January 2002)

    Google Scholar 

  21. Zeilberger, D.: A holonomic systems approach to special functions identities. Journal of Computational and Applied Mathematics 32(3), 321–368 (1990)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Serra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Serra, R., Arzelier, D., Joldes, M., Rondepierre, A. (2015). Probabilistic Collision Avoidance for Long-term Space Encounters via Risk Selection. In: Bordeneuve-Guibé, J., Drouin, A., Roos, C. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Cham. https://doi.org/10.1007/978-3-319-17518-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17518-8_39

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17517-1

  • Online ISBN: 978-3-319-17518-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics