Skip to main content

Airborne Doppler LiDAR Sensor Parameter Analysis for Wake Vortex Impact Alleviation Purposes

  • Conference paper
Book cover Advances in Aerospace Guidance, Navigation and Control

Abstract

This paper presents a sensitivity study of a wake vortex impact alleviation system based on an airborne forward-looking Doppler LiDAR sensor. The basic principle of the system is to use this sensor to measure the wind remotely ahead of the aircraft. On the basis of these measurements the system estimates whether a wake vortex is located in front of the aircraft. If this is the case, the wake vortex characteristics are identified and the control deflections countervailing the wake-induced aircraft response are computed and applied. An integrated simulation environment comprising a full nonlinear 6-DoF A320 model (with control laws), wake vortex models, and the wake impact alleviation algorithms was developed. The LiDAR sensor subsystem has many design parameters that influence the overall performance in a complex way, which makes it difficult to derive adequate requirements. The presented parameter study provides first insights into the role of each parameter as well as some adequate parameter combinations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. TSB, Encounter with Wake Turbulence Air Canada Airbus A319-114 C-GBHZ Washington State, USA 10 January 2008, Aviation Investigation Report A08W0007 (April 8, 2010)

    Google Scholar 

  2. NTSB, Brief of Accident LAX99LA291, Washington, D.C. (May 17, 2001)

    Google Scholar 

  3. ATSB, Wake turbulence event Sydney Airport, NSW 3 November 2008, Aviation Occurrence Investigation AO-2008-077 (November 2009) ISBN 978-1-74251-009-5.

    Google Scholar 

  4. NTSB, In-Flight Separation of Vertical Stabilizer American Airlines Flight 587 Airbus Industrie A300-605R, N14053 Belle Harbor, New York November 12, 2001, NTSB/AAR-04/04, Washington, D.C. (2004)

    Google Scholar 

  5. NTSB, Brief of Accident LAX94FA073, Washington, D.C. (October 06, 1994)

    Google Scholar 

  6. Looye, G., Lombaerts, T., Kier, T.: Design and Flight Testing of Feedback Control Laws. Research Report DLR-FB-2012-02, The DLR Project Wetter & Fliegen, p. 162-170 (2012)

    Google Scholar 

  7. Rafi, M., Steck, J.: Response and Recovery of an MRAC Advanced Flight Control System to Wake Vortex Encounters. In: AIAA Infotech@ Aerospace Conference, Boston (August 2013)

    Google Scholar 

  8. Schwarz, C., Hahn, K.-U.: Automated Pilot Assistance for Wake Vortex Encounters. In: CEAS, Berlin, Germany, September 10-13 (2006)

    Google Scholar 

  9. Hahn, K.-U., Fischenberg, D., Niedermeier, D., Horn, C.: Wake Encounter Flight Control Assistance Based on Forward-Looking Measurement Processing. In: AIAA Guidance, Navigation, and Control Conference, Toronto, Ontario Canada, August 2-5 (2010)

    Google Scholar 

  10. Kloidt, S.: Beiträge zum Entwurf eines Flugregelungssystems zur Reduktion des Wirbelschleppeneinflusses (English: Contributions to the Design of a Flight Control System for the Reduction of the Wake Vortex Impact). Ph.D Thesis, TU Berlin, Germany (2007)

    Google Scholar 

  11. Ehlers, J., Fischenberg, D., Niedermeier, D.: Wake Identification Based Wake Impact Alleviation Control. In: AIAA AVIATION, Atlanta, GA, US, June 16-20 (2014)

    Google Scholar 

  12. Fischenberg, D.: Online Wake Identification Algorithms Using Forward Looking LIDAR Sensor Measurements. DLR Report IB111-2013/11, DLR German Aerospace Center, Braunschweig, Germany (February 2013)

    Google Scholar 

  13. Fischenberg, D.: Strömungsermittlungsverfahren/Flow Determination Method/Procédé de détermination d’écoulement. Patent No. EP 2 340 438 B1, European Patent Office (2013)

    Google Scholar 

  14. Jategaonkar, R.V.: Flight Vehicle System Identification: A Time Domain Methodology. Progress in Astronautics and Aeronautics. AIAA, Reston (2006)

    Google Scholar 

  15. Burnham, D.C., Hallock, J.N.: Chicago Monoacoustic Vortex Sensing System. Wale Vortex Decay, vol. 4. National Information Service, Springfield (1982)

    Google Scholar 

  16. Fischenberg, D.: A method to validate wake vortex encounter models from flight test data. In: 27th International Congress of the Aeronautical Sciences, ICAS 2010, Nice, France (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Ehlers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ehlers, J., Fezans, N. (2015). Airborne Doppler LiDAR Sensor Parameter Analysis for Wake Vortex Impact Alleviation Purposes. In: Bordeneuve-Guibé, J., Drouin, A., Roos, C. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Cham. https://doi.org/10.1007/978-3-319-17518-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17518-8_25

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17517-1

  • Online ISBN: 978-3-319-17518-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics