Skip to main content

Flocking Algorithm for Fixed-Wing Unmanned Aerial Vehicles

  • Conference paper
Advances in Aerospace Guidance, Navigation and Control

Abstract

The problem of swarms autonomous flying has been extensively studied for many years, giving a variety of great applications and contributing a lot of knowledge to the theory of swarms. In many cases, the researchers try to imitate animals which are perfectly adopted to moving collectively. Therefore, it would be a great idea to create a flock of UAVs flying like a herd of pigeons. Hence, the paper presents the algorithm of aerial flocking, which is a step towards this idea. The algorithm assumes a hierarchical and decentralized structure of the flock based on two flocking rules: of cohesion and repulsion. These rules of aerial flocking combined with the leadership in the flock, similarly as it is in a herd of pigeons, allow achieving a coherent swarm of fixed-wing UAVs. To prove this conclusion, both numerical and experimental results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Karimoddini, A., Lin, H., Chen, B.M., Lee, T.H.: Hybrid formation control of the Unmanned Aerial Vehicles. Mechatronics 21(5), 886–898 (2011)

    Article  Google Scholar 

  2. Hauert, S., Leven, S., Varga, M., Ruini, F., Cangelosi, A., Zufferey, J.-C., Floreano, D.: Reynolds flocking in reality with fixed-wing robots: communication range vs. maximum turning rate. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5015–5020 (2011)

    Google Scholar 

  3. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Computer Graphics 21, 25–34 (1987)

    Article  Google Scholar 

  4. Crowther, B.: Rule-based guidance for flight vehicle flocking. Proceedings of the Institute of Mechanical Engineers, Part G: Journal of Aerospace Engineering 218(2), 111–124 (2004)

    Article  Google Scholar 

  5. Basu, P., Redi, J., Shurbanov, V.: Coordinated flocking of UAVs for improved connectivity of mobile ground nodes. In: Proceedings of the IEEE Military Communications Conference, vol. 3, pp. 1628–1634. IEEE Press (2004)

    Google Scholar 

  6. Chang, D., Shadden, S., Marsden, J., Olfati-Saber, R.: Collision avoidance for multiple agent systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control, pp. 539–543. IEEE Press (2003)

    Google Scholar 

  7. De Nardi, R.: Flocking of UAVs Software model and limited vision simulations. Ph.D. dissertation, University of Essex (2004)

    Google Scholar 

  8. Welsby, J., Melhuish, C.: Autonomous minimalist following in three dimensions: A study with small-scale dirigibles, Proceedings of Towards Intelligent Mobile Robots. Technical Report Series, Manchester University, Department of Computer Science (2001)

    Google Scholar 

  9. Kownacki, C.: Koncepcja sterowania rojem bezzałogowych obiektów latających. Pomiary Automatyka Kontrola 58(8), 704–711 (2012) (in Polish)

    Google Scholar 

  10. Kownacki, C.: Modelowanie i symulacja lotu roju bezzałogowych obiektów latających. In: Gosiewski, Z. (ed.) Loty grupowe i wyrzutnie bezzałogowych aparatów, pp. 249–270. Oficyna Wydawnicza Politechniki Białostockiej (2013) (in Polish)

    Google Scholar 

  11. Kownacki, C.: Badania symulacyjne HWIL lotu roju dwóch bezzałogowych obiektów z wykorzystaniem zaawansowanych autopilotów. In: Gosiewski, Z. (ed.) Loty grupowe i wyrzutnie bezzałogowych aparatów, pp. 271–301. Oficyna Wydawnicza Politechniki Białostockiej (2013) (in Polish)

    Google Scholar 

  12. Vaughan, R., Sumpter, N., Handerson, J., Frost, A., Cameron, S.: Experiments in automatic flock control. Robotics and Autonomous Systems 31(1), 109–117 (2000)

    Article  Google Scholar 

  13. Fine, B.T., Shell, D.A.: Unifying microscopic flocking motion models for virtual, robotic, and biological flock members. Autonomous Robots 35(2-3), 195–219

    Google Scholar 

  14. Vásárhelyi, G., Virágh, C., Tarcai, N., Szörényi, T., Somorjai, G.G., Nepusz, T., Vicsek, T.: Outdoor flocking and formation flight with autonomous aerial robots. In: IROS 2014 (2014) (accepted)

    Google Scholar 

  15. Virágh, C., Vásárhelyi, G., Tarcai, N., Szörényi, T., Somorjai, G., Nepusz, T., Vicsek, T.: Flocking algorithm for autonomous flying robots. Bioinspiration & Biomimetics 9(2), 025012 (2014)

    Article  Google Scholar 

  16. Flack, A., Ákos, Z., Nagy, M., Vicsek, T., Biro, D.: Robustness of flight leadership relations in pigeons. Animal Behaviour 86(4), 723–732

    Google Scholar 

  17. Nagy, M., Ákos, Z., Biro, D., Vicsek, T.: Hierarchical group dynamics in pigeon flocks. Nature 464(7290), 890–893

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cezary Kownacki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Kownacki, C., Ołdziej, D. (2015). Flocking Algorithm for Fixed-Wing Unmanned Aerial Vehicles. In: Bordeneuve-Guibé, J., Drouin, A., Roos, C. (eds) Advances in Aerospace Guidance, Navigation and Control. Springer, Cham. https://doi.org/10.1007/978-3-319-17518-8_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17518-8_24

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17517-1

  • Online ISBN: 978-3-319-17518-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics