Skip to main content

Fluoride Tolerance

  • Chapter
  • First Online:

Part of the book series: SpringerBriefs in Animal Sciences ((BRIEFSANIMAL))

Abstract

Fluoride tolerance varies with species, age, and sex of the animal; individual resistance; dose, duration, and consistency of fluoride uptake; and dietary, nutritional, and environmental factors. The tolerance levels established by experimental studies may be erroneous sometimes, due to poor correlation between fluoride concentration in feed and water and actual bioavailability of the fluoride. Rabbits, guinea pigs, rats, mice, and some wild rodents are highly susceptible to fluoride toxicity. Among domestic animals, ruminants have less fluoride tolerance than simple-stomach animals. Carnivores are even more tolerant than herbivorous simple-stomach animals. Dental and bony lesions similar to those observed in domestic cattle and buffaloes may appear in wild cervids after excess fluoride intake. Poultry are highly tolerant to fluoride. On the other hand, insects, some other invertebrates, and soft water dwelling fish have low fluoride tolerance.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Aguirre-Sierra A, Alonso A, Camargo JA (2011) Contrasting sensitivities to fluoride toxicity between juveniles and adults of the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca). Bull Environ Contam Toxicol 86:476–479

    Article  CAS  PubMed  Google Scholar 

  • Ammerman CB, Henry PR, Conrad JH, Fick KR, Arauju EC (1980) Inappetence in ruminants as measure of fluoride solubility in various phosphates. J Dairy Sci 63:1167–1171

    Article  CAS  PubMed  Google Scholar 

  • Anderson JO, Hurst JS, Strong DC, Nielsen HM, Greenwood DA, Robinson W, Shupe JL, Binns W, Bagley RA, Draper CI (1955) Effect of feeding various levels of sodium fluoride to growing turkeys. Poultry Sci 34:1147–1153

    Article  CAS  Google Scholar 

  • Bhargavi V, Khandare AL, Venkaiah K, Sarojini G (2004) Mineral content of water and food in fluorotic villages and prevalence of dental fluorosis. Biol Trace Elem Res 100:195–203

    Article  CAS  PubMed  Google Scholar 

  • Briggs GM, Phillips PH (1952) Development of fluoride toxicosis in the rabbit. Proc Soc Exp Biol Med 80:30

    Article  CAS  PubMed  Google Scholar 

  • Burgstahler AW (2006) Failure to diagnose fluoride poisoning in horses caused by water fluoridation. Fluoride 39:1–2

    Google Scholar 

  • Camargo JA (2003) Fluoride toxicity to aquatic organism: a review. Chemosphere 50:251–264

    Article  PubMed  Google Scholar 

  • Camargo JA (2004) Effects of body size and sodium chloride on the tolerance of net-spinning caddisfly larvae to fluoride toxicity. Bull Environ Contam Toxicol 72:579–585

    Article  CAS  PubMed  Google Scholar 

  • Camargo JA, Tarazona JV (1990) Acute toxicity to freshwater benthic macro-invertebrates of fluoride ion (F-) in soft water. Bull Environ Contam Toxicol 45:883–887

    Article  CAS  PubMed  Google Scholar 

  • Chinoy NJ, Mehta D (1999a) Beneficial effects of the amino acids glycine and glutamine on testis of mice treated with sodium fluoride. Fluoride 32:162–170

    CAS  Google Scholar 

  • Chinoy NJ, Mehta D (1999b) Effects of protein supplementation and deficiency on fluoride-induced toxicity in reproductive organs of male mice. Fluoride 32:204–214

    CAS  Google Scholar 

  • Chinoy NJ, Memon MR (2001) Beneficial effects of some vitamins and calcium on fluoride and aluminium toxicity on gastrocnemius muscle and liver of male mice. Fluoride 34:21–33

    CAS  Google Scholar 

  • Chinoy NJ, Patel TN (2000) The influence of fluoride and/or aluminium on free radical toxicity in the brain of female mice and the beneficial effects of some antidotes. In: Proceedings of XXIIIrd ISFR conference, Szczecin, Poland. Fluoride 33: S8

    Google Scholar 

  • Choubisa SL (1999) Some observations on endemic fluorosis in domestic animals in Southern Rajasthan (India). Vet Res Commun 23:457–465

    Article  CAS  PubMed  Google Scholar 

  • Choubisa SL (2013a) Why desert camels are least afflicted with osteo-dental fluorosis? Curr Sci India 105:1671–1672

    Google Scholar 

  • Choubisa SL (2013b) Fluorotoxicosis in diverse species of domestic animals inhabiting areas with high fluoride in drinking water of Rajasthan, India. P Natl Acad Sci India B 83:317–321

    CAS  Google Scholar 

  • Choubisa SL, Mishra GV, Sheikh Z, Bhardwaj B, Mali P, Jaroli VJ (2011) Food, fluoride and fluorosis in domestic ruminants in the Dungarpur district of Rajasthan, India. Fluoride 44:70–76

    CAS  Google Scholar 

  • Clarke E, Beveridge I, Slocombe R, Coulson G (2006) Fluorosis as a probable cause of chronic lameness in free ranging eastern grey kangaroo (Macropus giganteus). J Zoo Wildlife Med 37:477–486

    Article  Google Scholar 

  • Damkaer DM, Dey DB (1989) Evidence for fluoride effects on salmon passage at John Day Dam, Columbia river, 1982–1986. North Am J Fish Manage 9:154–162

    Article  Google Scholar 

  • Ekambaram P, Paul V (2002) Modulation of fluoride toxicity in rats by calcium carbonate and by withdrawal of fluoride exposure. Pharmacol Toxicol 90:53–58

    Article  CAS  PubMed  Google Scholar 

  • Elsair J, Merad R, Denine R, Reggabi M, Alamir B, Benali S, Azzouz M, Khelfat K (1980) Boron as an antidote in acute and sub-acute fluoride intoxication in rabbits: its action on fluoride and calcium-phosphorus metabolism. Fluoride 13:129–138

    CAS  Google Scholar 

  • Elsair J, Merad R, Denine R, Azzouz M, Khelfat K, Hamrour M, Alamir B, Benali S, Reggabi M (1981) Boron as an antidote to fluoride: effects on bones and claws in subacute intoxication of rabbits. Fluoride 14:21–29

    CAS  Google Scholar 

  • Everett ET, McHenry MAK, Reynolds N, Eggertsson H, Sullivan J, Kantman C, Martinez-Mier EA, Warrick JM (2002) Dental fluorosis: variability among different inbred mouse strains. J Dental Res 81:794–798

    Article  CAS  Google Scholar 

  • Flueck WT, Smith-Flueck JA (2013) Severe dental fluorosis in juvenile deer linked to a recent volcanic eruption in Patagonia. J Wildl Dis 49:355–366

    Article  PubMed  Google Scholar 

  • Giri DK, Ghosh RC, Mondal M (2014) Pathology of acute oral toxicity of sodium fluoride in Wistar rats. Indian J Vet Pathol 38:33–38

    Article  Google Scholar 

  • Gonzalo C, Camargo JA, Masiero L, Casellato S (2010) Fluoride toxicity and bioaccumulation in the invasive amphipod Dikerogammarus villosus (Sowinsky 1984): a laboratory study. Bull Environ Contam Toxicol 85:472–475

    Article  CAS  PubMed  Google Scholar 

  • Grancher D, Jean-Blain C, Milhaud G (1988) Fluorosis dogs. Klcinticrpraxis 33:203–205

    Google Scholar 

  • Greenwood DA (1956) Some effects of inorganic fluoride on plants, animals and man. Fifteenth annual faculty research lecture. The faculty association, Logan Utah: Utah State Agricultural College

    Google Scholar 

  • Groth E (1975) Fluoride pollution. Environment 17:29–38

    Article  Google Scholar 

  • Guney M, Oral B, Demirin H, Karahan N, Mungan T, Delibas N (2007) Protective effects of vitamins C and E against endometrial damage and oxidative stress in fluoride intoxication. Clin Exp Pharmacol Physiol 34:467–474

    Article  CAS  PubMed  Google Scholar 

  • Guo YH, Wang JD, Liang ZX, Li JP, Shen R, Guo YH, Wang JD, Liang ZX, Li JP, Shen RL (2002) Observation of the effect of high fluoride and low nourishment on tooth development of goats by SEM. Chinese J Vet Sci 22:181–183

    Google Scholar 

  • Halpin JG, Lamb AR (1932) The effect of ground phosphate rock fed at various levels on the growth of chicks and on egg production: preliminary report. Poultry Sci 11:5–13

    Article  CAS  Google Scholar 

  • Han B, Yoon SS, Wu PF, Han HR, Liang LC (2006) Role of selenium in alternation of erythrocyte parameters in bovine fluorosis. Asian-Aust J Anim Sci 19:665–712

    Google Scholar 

  • Henny CJ, Burke PM (1990) Fluoride accumulation and bone strength in wild black-crowned night-herons. Arch Environ Contam Toxicol 19:132–137

    Article  CAS  PubMed  Google Scholar 

  • Hobbs CS, Merriman GM (1962) Fluorosis in beef cattle. Knoxville: Tenn Agric Exp Stn Bull p 351

    Google Scholar 

  • Hobbs CS, Moorman RP, Griffith JM, West JL, Merriman GM, Hansard SL, Chamberlain CC with the collaboration of MacIntire WH, Jones LJ, Jones LS (1954) Fluorosis in cattle and sheep. Knoxville: Tenn Agric Exp Stn Bull p 235

    Google Scholar 

  • Hoerz W, McCarty KS (1971) Initiation of protein synthesis in a rabbit reticulocyte lysate system. Biochim Biophys Acta 228:526–535

    Article  CAS  PubMed  Google Scholar 

  • Jolly SS, Sharma OP, Garg G, Sharma R (1980) Kidney changes and kidney stones in endemic fluorosis. Fluoride 13:10–16

    CAS  Google Scholar 

  • Karram MH, Ibrahim ThA (1992) Effect of industrial fluorosis on hemogram of camels. Fluoride 25:23–36

    Google Scholar 

  • Keller AE, Augspurger T (2005) Toxicity of fluoride to the endangered Unionid Mussel Alasmidonta raveneliana, and surrogate species. Bull Environ Contam Toxicol 74:242–249

    Article  CAS  PubMed  Google Scholar 

  • Khandare AL, Harikumar R, Sivakumar B (2005a) Severe bone deformities in young children from vitamin D deficiency and fluorosis in Bihar-India. Calcif Tissue Int 76:412–418

    Article  CAS  PubMed  Google Scholar 

  • Khandare AL, Kumar PU, Lakshmaiah N (2000) Beneficial effect of Tamarind ingestion on fluoride toxicity in dogs. Fluoride 33:33–38

    CAS  Google Scholar 

  • Khandare AL, Suresh P, Kumar PU, Lakshmaiah N, Manjula N, Rao GS (2005b) Beneficial effects of copper supplementation on deposition of fluoride in bone fluoride and molybdenum-fed rabbits. Calcified Tissue Int 77:233–238

    Article  CAS  Google Scholar 

  • Kierdorf H, Kierdorf U, Witzel C (2005) Deposition of cellular cementum onto hypoplastic enamel of fluorotic teeth in wild boars (Sus scrofa L). Anat Embryol (Berl) 209:281–286

    Article  CAS  Google Scholar 

  • Kierdorf H, Kierdorf U, Richards A, Sedlacek F (2000) Disturbed enamel formation in wild boars (Sus scrofa L.) from fluoride polluted areas in Central Europe. Anat Rec 259:12–24

    Article  CAS  PubMed  Google Scholar 

  • Kierdorf U, Kierdorf H, Fejerskov O (1993) Fluoride-induced developmental changes in enamel and dentin of European roe deer (Capreolus capreolus L) as a result of environmental pollution. Arch Oral Biol 38:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Krishnamachari KAVR, Krishnaswamy K (1974) An epidemiological study of the syndrome of Genu-valgum among residents of endemic areas for fluorosis in Andhra Pradesh. Indian J Med Res 62:1415–1423

    CAS  PubMed  Google Scholar 

  • Lakshmaiah N, Srikantia SG (1977) Fluoride retention in humans on sorghum and rice based diets. Indian J Med Res 65:543–548

    CAS  PubMed  Google Scholar 

  • Lakshmi AV, Lakshmaiah N (1999) Effect of different cereal-based diets on fluoride retention in rats. In: Proceedings of the national seminar on fluoride contamination, fluoride and defluoridation techniques, Udaipur, India, 25–27 Feb 1999

    Google Scholar 

  • McGown EL, Kolstad DL, Suttie JW (1976) Effect of dietary fat on fluoride absorption and tissue fluoride retention in rats. J Nutr 106:575–579

    CAS  PubMed  Google Scholar 

  • Miller RF, Phillips PH (1955) The enhancement of the toxicity of sodium fluoride in the rat by high dietary fat. J Nutr 56:447–454

    CAS  PubMed  Google Scholar 

  • Mousney M, Banse X, Wise L, Everett ET, Hancock R, Vieth R, Devogelaer JP, Grynpas MD (2006) The genetic influence on bone susceptibility to fluoride. Bone 39:1283–1289

    Article  Google Scholar 

  • Neuhold JM, Sigler WF (1962) Chlorides affect the toxicity of fluoride in rainbow trout. Science 135:732–733

    Article  CAS  PubMed  Google Scholar 

  • Newman JR, Ming-Ho Yu (1976) Fluorosis in black- tailed deer. J Wildlife Dis 12:39–41

    Article  CAS  Google Scholar 

  • NRC (1960) The fluorosis problem in livestock production. A report of the NRC committee on animal nutrition. Washington, DC, National Research Council

    Google Scholar 

  • NRC (1974) Effects of fluorides in animals. Report of committee on animal nutrition. Washington, National Research Council

    Google Scholar 

  • NRC (1980) Mineral tolerance of domestic animals. NRC (US) subcommittee on mineral toxicity in animals. Washington, National Research Council

    Google Scholar 

  • Paranjpe MG, Chandra AMS, Qualls CW, McMurry ST, Rohrer MD, Whaley MM, Lochmiller RL, McBee K (1994) Fluorosis in wild cotton rat (Sigmodon hispidus) population inhabiting a petrochemical waste site. Toxicol Pathol 22:569–578

    Article  CAS  PubMed  Google Scholar 

  • Phillips PH, Greenwood DA, Hobbs CS, Huffman CF (1955) The fluorosis problem in livestock production. Publication 381, Washington, National Research Council

    Google Scholar 

  • Pimentel R, Bulkley RV (1983) Influence of water hardness on fluoride toxicity to rainbow trout. Environ Toxicol Chem 2:381–386

    Article  CAS  Google Scholar 

  • Rafferty DP, Lochmiller RL, Kim S, Qualls CW, Schroder J, Basta N, McBee K (2000) Fluorosis risk to resident hispid cotton rats on land-treatment facilities for petrochemical wastes. J Wildlife Dis 36:636–645

    Article  CAS  Google Scholar 

  • Ranjan R, Ranjan A, Dhaliwal GS, Patra RC (2013) L-ascorbic acid (Vitamin C) supplementation to optimize health and reproduction in cattle. Vet Quart 32:145–150

    Article  Google Scholar 

  • Romero PRJ, Pureco AA, Cuaron IJA (1991) Fluoride intoxication in rabbits: field outbreak. Tecnica-Pecuaria-en-Mexico 28:103–109

    Google Scholar 

  • Schultz M, Kierdorf U, Sedlacek F, Kierdrof H (1998) Pathological bone changes in the mandibles of wild red deer (Cervus elaphus L) exposed to high environmental levels of fluoride. J Anat 193:431–442

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shellenberg D, Marks TA, Metzler CM, Oostveen JA, Morey MJ (1990) Lack of effect of fluoride on reproductive performance and development in Shetland Sheepdogs. Vet Hum Toxicol 32:309–314

    CAS  Google Scholar 

  • Shupe JL (1969) Fluorosis in livestock. Air quality monograph No. 69–4. New York, American Petroleum Institute, pp 29

    Google Scholar 

  • Shupe JL (1980) Clinicopathological features of fluoride toxicosis in cattle. J Anim Sci 51:746–758

    CAS  PubMed  Google Scholar 

  • Shupe JL, Olson AE (1971) Clinical aspects of fluorosis in horses. J Am Vet Med Assoc 158:167–174

    CAS  PubMed  Google Scholar 

  • Shupe JL, Larsen AE, Olson AE (1987) Effect of diets containing sodium fluoride on mink. J Wildlife Dis 23:606–613

    Article  CAS  Google Scholar 

  • Shupe JL, Olson MS, Peterson HB, Low JB (1984) Fluoride toxicosis in wild ungulates. J Am Vet Med Assoc 185:1295–1300

    CAS  PubMed  Google Scholar 

  • Sigler WF, Neuhold JM (1972) Fluoride intoxication in fish: a review. J Wildlife Dis 8:252–254

    Article  CAS  Google Scholar 

  • Singh P, Rani B, Singh U, Maheshwari R (2011) Fluoride contamination in groundwater of Rajasthan and its mitigation strategies. J Pharmaceut Biomed Sci 6:1–12

    CAS  Google Scholar 

  • Singh PK, Sahoo N, Ray SK (2002) Clinico-pathological features of fluorosis in goats. Indian Vet J 79:776–779

    Google Scholar 

  • Suttie JW (1980) Nutritional aspects of fluoride toxicosis. J Anim Sci 51:759–766

    CAS  PubMed  Google Scholar 

  • Suttie JW, Carlson JR, Faltin EC (1972) Effects of alternating periods of high- and low-fluoride ingestion on dairy cattle. J Dairy Sci 55:790–804

    Article  CAS  PubMed  Google Scholar 

  • Suttie JW, Hamilton RJ, Clay AC, Tobin ML, Moore WG (1985) Effects of fluoride ingestion on white-tailed deer (Odocoileus virginianus). J Wildlife Dis 21:283–288

    Article  CAS  Google Scholar 

  • Swarup D, Dwivedi SK (2002) Environmental pollution and effects of lead and fluoride on animal health. Indian Council of Agricultural Research, Pusa, New Delhi

    Google Scholar 

  • Twigg LE, Lowe TJ, Kirkpatrick WE, Martin GR (2003) Investigation of alternative baits for rabbit control, and the examination of the distribution and longevity of 1080 in one-shot oats. Wildlife Res 30:573–581

    Article  Google Scholar 

  • Underwood EJ, Suttle NF (1999) The mineral nutrition of livestock, 3rd edn. CABI Publishing, Oxon

    Book  Google Scholar 

  • USEPA (1980) Reviews of the environmental effects of pollutants: IX. Fluoride. US Environmental Protection Agency, Cincinnati (EPA-600/1-78-050)

    Google Scholar 

  • Vikoren T, Gudbrand S (1996) Fluoride exposure in cervids inhibiting areas adjacent to aluminium smelters in Norway II. Fluorosis. J Wildlife Dis 32:181–189

    Article  CAS  Google Scholar 

  • Walton KC (1984) Fluoride in fox bone near an aluminium reduction plant in Anglesy, Wales, and elsewhere in the United Kingdom. Environ Pollut B 7:273–280

    Article  CAS  Google Scholar 

  • Walton KC, Ackroyd S (1988) Fluoride in mandibles and antlers of roe and red deer from different areas of England and Scotland. Environ Pollut B 54:17–27

    Article  CAS  Google Scholar 

  • Weinstein LH, Davison A (2004) Fluorides in the environment: effects on plants and animals. CABI Publishing, Cambridge

    Book  Google Scholar 

  • Whitford GM, Pashley DH (1984) Fluoride absorption: the influence of gastric acidity. Cal Tissue Int 36:302–307

    Article  CAS  Google Scholar 

  • Whitford GM, Pashley DH, Garman RH (1997) Effects of fluoride on structure and function of canine gastric mucosa. Digest Dis Sci 42:2146–2155

    Article  CAS  PubMed  Google Scholar 

  • WHO (1984) Fluorine and fluorides. Environmental Health Criteria 36. Geneva, World Health Organization

    Google Scholar 

  • WHO (2000) Fluorides. Chpater 6.5. Air quality guidelines. 2nd edn. WHO regional office for Europe, World Health Organization, Copenhagen, Denmark

    Google Scholar 

  • WHO (2005) Mineral tolerance of animals, 2nd edn. The National Academic Press, Washington

    Google Scholar 

  • Yin X, Chen L, Sun L, Wang M, Luo H, Ruan D, Wang Y, Wang Z (2010) Why do penguins not develop skeletal fluorosis? Fluoride 43:108–118

    CAS  Google Scholar 

  • Zhou T, Zhai XJ (1991) Pathological study on experimental chronic fluorosis in sheep. Acta Veterinariaet Zootechnica Sinica 22:61–68

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Ranjan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Ranjan, R., Ranjan, A. (2015). Fluoride Tolerance. In: Fluoride Toxicity in Animals. SpringerBriefs in Animal Sciences. Springer, Cham. https://doi.org/10.1007/978-3-319-17512-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17512-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17511-9

  • Online ISBN: 978-3-319-17512-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics