Skip to main content

Adjacency Variables Formulation for the Minimum Linear Arrangement Problem

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 509))

Abstract

We present a new integer linear formulation using \(O(n^2)\) variables, called adjacency variables, to solve the Minimum Linear Arrangement problem (MinLA). We give a couple of valid equalities and inequalities for this formulation, some of them deriving from on a new general partitioning approach that is not limited to our formulation. We numerically tested the lower bound provided by the linear relaxation using instances of the matrix market library. Our results are compare with the best known lower bounds, in terms of quality, as well computing times.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://math.nist.gov/MatrixMarket/.

References

  1. Amaral, A.: A new lower bound for the single row facility layout problem. Discrete App. Math. 157, 183–190 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amaral, A., Caprara, A., Letchford, A., Gonzalez, J.: A new lower bound for the minimum linear arrangement of a graph. Electron. Notes Discrete Math. 30, 87–92 (2008)

    Article  Google Scholar 

  3. Mouawad, A.E., Nishimura, N., Raman, V., Simjour, N., Suzuki, A.: On the parameterized complexity of reconfiguration problems. In: Gutin, G., Szeider, S. (eds.) IPEC 2013. LNCS, vol. 8246, pp. 281–294. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  4. Caprara, A., Gonzalez, J.: Laying out sparse graphs with provably minimum bandwidth. INFORMS J. Comput. 17(3), 356–373 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Caprara, A., Letchford, A., Gonzalez, J.: Decorous lower bounds for minimum linear arrangement. INFORMS J. Comput. 23 (2010)

    Google Scholar 

  6. Caprara, A., Oswald, M., Reinelt, G., Schwarz, R., Traversi, E.: Optimal linear arrangements using betweeness variables. Math Program. Comput. 3, 261–280 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Deza, M., Laurent, M.: Geometry of cuts and metrics. In: Algorithms and Combinatorics, vol. 15. Springer, Heidelberg (1997)

    Google Scholar 

  8. Garey, M., Johnson, D., Stockmeyer, L.: Some simplified np-complete graph problems. Theoret. Comput. Sci. 1, 237–267 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  9. Gueye, S., Michel, S., Yassine, A.: A 0–1 linear programming formulation for the berth assignment problem. In: IEEE LOGISTIQUA 2011, pp. 50–54 (2011)

    Google Scholar 

  10. Harper, L.H.: Optimal assignment of numbers to vertices. J. SIAM 12, 131–135 (1961)

    MathSciNet  Google Scholar 

  11. Hendrickson, B., Leland, R.: The chaco user’s guide, version 2.0. Technical report. SAND95-2344, Sandia National Laboratories (1995)

    Google Scholar 

  12. Horton, S.: The optimal linear arrangement problem: algorithms and approximation. Ph.D. Thesis, Georgia Institute of Technology (1997)

    Google Scholar 

  13. Hungerlaender, P., Rendl, F.: A computational study and survey of methods for the single-row facility layout problem. Technical report (2012)

    Google Scholar 

  14. Koopmans, T.C., Beckmann, M.J.: Assignment problems and the location of economic activities. Econometrica 25, 53–76 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  15. Lisser, A., Rendl, F.: Graph partitioning using linear and semidefinite programming. Math. Program., Ser. B 95, 91–101 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  16. Liu, W., Vanelli, A.: Generating lower bounds for the linear arrangement problem. Discrete Appl. Math. 59, 137–151 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  17. Petit, J.: Experiments on the minimum linear arrangement problem. Technical report (1999)

    Google Scholar 

  18. Schwarz, R.: A branch-and-cut algorithm with betweenness variables for the Linear arrangement problem. Ph.D. Thesis, Universitaet Heidelberg (2010)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the region of Haute- Normandie (France) and the European Union. This support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serigne Gueye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Gueye, S., Michel, S., Moeini, M. (2015). Adjacency Variables Formulation for the Minimum Linear Arrangement Problem. In: Pinson, E., Valente, F., Vitoriano, B. (eds) Operations Research and Enterprise Systems. ICORES 2014. Communications in Computer and Information Science, vol 509. Springer, Cham. https://doi.org/10.1007/978-3-319-17509-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17509-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17508-9

  • Online ISBN: 978-3-319-17509-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics