Skip to main content

Nash Equilibria for Multi-agent Network Flow with Controllable Capacities

  • Conference paper
  • First Online:
Operations Research and Enterprise Systems (ICORES 2014)

Abstract

In this work, a multi-agent network flow problem is addressed where a set of transportation-agents can control the capacities of a set of elementary routes A third-party agent, a customer, is interesting in maximizing the product flow transshipped from a source to a sink node through the network and offers a reward that is proportional to the flow value the transportation agents manage to provide. This problem can be viewed as a Multi-Agent Minimum-Cost Maximum-Flow Problem where the focus is put on finding stable strategies (i.e., Nash Equilibria) such that no transportation-agent has any incentive to modify its behavior. We show how such an equilibrium can be characterized by means of augmenting or decreasing paths in a reduced network. We also discuss the problem of finding a Nash Equilibrium that maximizes the flow and prove its NP-Hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, B., Cheng, H.H.: A review of the applications of agent technology in traffic and transportation systems. IEEE Trans. Intell. Transp. Syst. 11(2), 485–497 (2010)

    Article  Google Scholar 

  2. Pechoucek, M., Marik, V.: Industrial deployment of multi-agent technologies: review and selected case studies. Auton. Agent. Multi-Agent Syst. 17(3), 397–431 (2008)

    Article  Google Scholar 

  3. Briand, C., Agnetis, A., Billaut, J.C.: The multiagent project scheduling problem: complexity of finding an optimal Nash equilibrium. In: Proceedings of PMS Conference, pp. 106–109 (2012)

    Google Scholar 

  4. Zhang, F., Roundy, R., Akanyildrim, M.C., Huh, W.T.: Optimal capacity expansion for multi-product, multi-machine manufacturing systems with stochastic demand. IIE Trans. 36(1), 23–26 (2004)

    Article  Google Scholar 

  5. Malcolm, S., Zenios, S.: Robust optimization for power systems capacity expansion under uncertainty. J. Oper. Res. Soc. 45(9), 1040–1049 (1994)

    Article  MATH  Google Scholar 

  6. Laguna, M.: Applying robust optimization to capacity expansion of one location in telecommunications with demand uncertainty. Manage. Sci. 44(11), 101–110 (1998)

    Article  Google Scholar 

  7. Hsu, V.N.: Dynamic capacity expansion problem with deferred expansion and age-dependent shortage cost. Manage. Sci. 4(1), 44–54 (2002)

    Google Scholar 

  8. Magnanti, T., Wong, R.: Network design and transportation planning: models and algorithms. Transp. Sci. 18(1), 1–55 (1984)

    Article  Google Scholar 

  9. Fulkerson, D.R.: Increasing the capacity of a network: the parametric budget problem. Manage. Sci. 5(4), 472–483 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  10. Ordonez, F., Zhao, J.: Robust capacity expansion of network flow. Networks 50(2), 136–145 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  11. Tardos, E., Wexler, T.: Network formation games and the potential function method. In: Nisan, N., Roughgarden, T., Tardos, E., Vazirani, V.V. (eds.) Algorithmic Game Theory, pp. 487–516. Cambridge University Press, Cambridge (2007)

    Chapter  Google Scholar 

  12. Apt, K.R., Markakis, E.: Diffusion in social networks with competing products. In: Persiano, G. (ed.) SAGT 2011. LNCS, vol. 6982, pp. 212–223. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Resnick, E., Bachrach, Y., Meir, R., Rosenschein, J.S.: The cost of stability in network flow games. In: Královič, R., Niwiński, D. (eds.) MFCS 2009. LNCS, vol. 5734, pp. 636–650. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  14. Evaristo, R., Van Fenema, P.C.: A typology of project management: emergence and evolution of new forms. Int. J. Proj. Manage. 17(5), 275–281 (1999)

    Article  Google Scholar 

  15. De, P., Dunne, E.J., Ghosh, J.B., Wells, C.E.: Complexity of the discrete time-cost tradeoff problem for project networks. Eur. J. Oper. Res. 45(2), 302–306 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Estevez, M.A.: Fernandez: a game theoretical approach to sharing penalties and rewards in projects. Eur. J. Oper. Res. 216(3), 647–657 (2012)

    Article  MATH  Google Scholar 

  17. Agnetis, A., Briand, C., Billaut, J.-C., Sucha, P.: Nash equilibria for the multi-agent project scheduling problem with controllable processing times. J. Sched. 18(1), 15–27 (2014)

    Article  MathSciNet  Google Scholar 

  18. Kamburowski, J.: On the minimum cost project schedule. Int. J. Manage. Sci. 22(4), 401–407 (1994)

    Google Scholar 

  19. Briand, C., Sucha, P., Ngueveu, S.U.: Finding an optimal Nash equilibrium to the multi-agent project scheduling problem. J. Oper. Res (Submitted to)

    Google Scholar 

  20. Cachon, G.P., Lariviere, M.A.: Supply chain coordination with revenue-sharing contracts: strengths and limitations. Int. J. Manage. Sci. 51(1), 30–44 (2005)

    MATH  Google Scholar 

  21. Ehrgott, M.: Multicriteria Optimization. Algorithmic Game Theory, pp. 487–516. Springer, New York (2005)

    Google Scholar 

  22. Ford, L.R., Fulkerson, D.R.: Flow in Networks. Princeton University Press, Princeton (1958)

    Google Scholar 

  23. Nash, J.: Equilibrium points in n-person games. Proc. Natl. Acad. Sci. 36(1), 48–49 (1950)

    Article  MATH  MathSciNet  Google Scholar 

  24. Nash, J.: Non-cooperative games. Ann. Math. 54(2), 286–295 (1951)

    Article  MATH  MathSciNet  Google Scholar 

  25. Shoham, Y., Leyton-Brown, K.: Multiagent Systems: Algorithmic, Game-Theoretic, and Logical Foundations. Cambridge University Press, New York (2009). ISBN 978-0-521-89943-7

    Book  Google Scholar 

  26. Busacker, R.G., Gowen, P.J.: A Procedure for Determining a Family of Minimal-Cost Network Flow Patterns. Defense Technical Information Center, 15th edn. (1961)

    Google Scholar 

  27. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the ANR project no. ANR-13-BS02-0006-01 named Athena.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadia Chaabane Fakhfakh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fakhfakh, N.C., Briand, C., Huguet, MJ. (2015). Nash Equilibria for Multi-agent Network Flow with Controllable Capacities. In: Pinson, E., Valente, F., Vitoriano, B. (eds) Operations Research and Enterprise Systems. ICORES 2014. Communications in Computer and Information Science, vol 509. Springer, Cham. https://doi.org/10.1007/978-3-319-17509-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17509-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17508-9

  • Online ISBN: 978-3-319-17509-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics