Skip to main content

Elaboration of General Lower Bounds for the Total Completion Time in Flowshop Scheduling Problems through MaxPlus Approach

  • Conference paper
  • First Online:
  • 598 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 509))

Abstract

As a type of scheduling problem, the flowshop problem has been largely studied for 60 years. The total completion time is a very interesting criterion because it reflects “the total manufacturing waiting time experienced by all customers”(Emmons and Vairaktarakis). There have been many studies in the past but they focused on a limited number of machines and/or on specific constraints. Therefore, this study presents a new approach to tackle a general permutation flowshop problem, with various additional constraints, to elaborate on lower bounds for the total completion time. These lower bounds can take into account several constraints, like delays, blocking or setup times, but they imply solving a Traveling Salesman Problem. The theory is developed first, based on a MaxPlus modeling of flowshop problems and experimental results of a branch-and-bound procedure with a lower bound selection strategy are then presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Allahverdi, A., Al-Anzi, F.S.: A branch-and-bound algorithm for three-machine flowshop scheduling problem to minimize total completion time with separate setup times. Eur. J. Oper. Res. 169(3), 767–780 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Augusto, V., Christophe, L., Bouquard, J.-L.: Résolution d’un flowshop avec delais minimaux et maximaux. In: MOSIM (2006)

    Google Scholar 

  3. Aydilek, H., Allahverdi, A.: Two-machine flowshop scheduling problem with bounded processing times to minimize total completion time. Comput. Math. Appl. 59(2), 684–693 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bouquard, J.-L., Christophe, L.: Two-machine flow shop scheduling problems with minimal and maximal delays. 4or 4(1), 15–28 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bouquard, J.-L., Lenté, C., Billaut, J.-C.: Application of an optimization problem in Max-Plus algebra to scheduling problems. Discrete Appl. Math. 154(15), 2064–2079 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brucker, P.: Scheduling Algorithms, 5th edn. Springer, Berlin (2006)

    Google Scholar 

  7. Carpaneto, G., Dell’amico, M., Toth, P.: Exact solution of large asymmetric traveling salesman problems. ACM Trans. Math. Softw. 21(4), 394–409 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cohen, G., Dubois, D., Quadrat, J.-P., Viot, M.: A linear system-theoretic view of discret-event processes and its use for performance evaluation in manufacturing. IEEE Trans. Autom. Control 30, 210–220 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  9. Croce, F.D., Narayan, V., Tadei, R.: The two-machine total completion time flow shop problem. Eur. J. Oper. Res. 90, 227–237 (1996)

    Article  MATH  Google Scholar 

  10. Emmons, H., Vairaktarakis, G.: Flow Shop Scheduling, 182nd edn. Springer, New York (2013)

    Book  Google Scholar 

  11. Gaubert, S.: Théorie des systèmes linéaires dans les dioïdes. Ph.D. thesis (1992)

    Google Scholar 

  12. Gaubert, S., Maisresse, J.: Modeling and analysis of timed Petri nets using heaps of pieces. IEEE Trans. Autom. Control 44(4), 683–698 (1999)

    Article  MATH  Google Scholar 

  13. Giffler, B.: Schedule Algebras and their use in formulating general systems simulations. In: Industrial Schduling. Prentice Hall, New Jersey (1963)

    Google Scholar 

  14. Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy, A.H.G.: Kan. Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5(2), 287–326 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gunawardena, J. (ed.): Idempotency. Publications of the Newton Institute, Cambridge (1998)

    MATH  Google Scholar 

  16. Hanen, C., Munier, A.: Cyclic Scheduling on Parallel Processors: An Overview. John Wiley, New York (1995)

    Google Scholar 

  17. Ignall, E., Schrage, L.: Application of branch-and-bound technique to some flow shop problems. Oper. Res. 13(3), 400–412 (1965)

    Article  MathSciNet  Google Scholar 

  18. Johnson, S.M.: Optimal two- and three-stage production schedules with setup times included. Naval Res. Logistics 1, 61–68 (1954)

    Article  Google Scholar 

  19. Christophe, L.: Analyse Max-Plus de problèmes d’ordonnancement de type flowshop. Ph.D. thesis, Université François Rabelais de Tours (2001)

    Google Scholar 

  20. Lenté, C.: Mathématiques. Université François Rabelais de Tours, Ordonnancement et Santé. Habilitation à diriger des recherches (2011)

    Google Scholar 

  21. Pan, Q.-K., Ruiz, R.: A comprehensive review and evaluation of permutation flowshop heuristics to minimize flowtime. Comput. Oper. Res. 40(1), 117–128 (2013)

    Article  MathSciNet  Google Scholar 

  22. Smith, W.E.: Various optimizers for single-stage production. Naval Res. Logistics Quart 3(1–2), 59–66 (1956)

    Article  Google Scholar 

  23. Ling-Huey, S., Lee, Y.-Y.: The two-machine flowshop no-wait scheduling problem with a single server to minimize the total completion time. Comput. Oper. Res. 35(9), 2952–2963 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Trabelsi, W., Sauvey, C., Sauer, N.: Heuristics and metaheuristics for mixed blocking constraints flowshop scheduling problems. Comput. Oper. Res. 39(11), 2520–2527 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vo, N.-V., Christophe, L.: Equivalence between two flowshop problems - MaxPlus Approach. In: Proceedings of the 2nd International Conference on Operations Research and Enterprise Systems. SciTePress - Science and Technology Publications, Barcelona, pp. 174–177 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nhat Vinh Vo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Vo, N.V., Fouillet, P., Lenté, C. (2015). Elaboration of General Lower Bounds for the Total Completion Time in Flowshop Scheduling Problems through MaxPlus Approach. In: Pinson, E., Valente, F., Vitoriano, B. (eds) Operations Research and Enterprise Systems. ICORES 2014. Communications in Computer and Information Science, vol 509. Springer, Cham. https://doi.org/10.1007/978-3-319-17509-6_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17509-6_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17508-9

  • Online ISBN: 978-3-319-17509-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics