Skip to main content

Memristor-Based Relaxation Oscillator Circuits

  • Chapter
  • First Online:
On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 26))

  • 2120 Accesses

Abstract

This chapter discusses the analysis and design of memristor-based oscillators which is considered one of the nonlinear analog block required for many applications such as chaotic memristor oscillators and artificial neuron network. The realizations of memristor-based oscillators have been discussed via replacing capacitors with memristors to construct relaxation reactance-less oscillators. The advantages of such oscillators are related to low frequency, nanoscale, and simple designs and can be used in neuromorphic systems. Different topologies of memristor-based relaxation oscillators have been discussed and either symmetric or asymmetric types with analytical formulas of oscillation frequency and condition for oscillations are derived. The analyses of these oscillators are introduced with their numerical simulations, and verified using PSPICE circuit simulations showing a great matching. Moreover, many fundamentals are also discussed such as the effect of boundary dynamics, series and parallel connections as well as power analysis in memristor-based circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gonzalez, G.: Foundations of Oscillator Circuit Design. Artech House, Boston (2007)

    Google Scholar 

  2. Zidan, M., Omran, H., Radwan, A., Salama, K.: Electron. Lett. 47(22), 1220 (2011)

    Google Scholar 

  3. Zidan, M., Omran, H., Smith, C., Syad, A., Radwan, A., Salama, K.: Int. J. Circuit Theory Appl. 42(22), 1103 (2014). doi:10.1002/cta.1908

  4. Mosad, A., Fouda, M., Khatib, M., Salama, K., Radwan, A.: Microelectron. J. 44(9), 814 (2013). doi:10.1016/j.mejo.2013.04.005. http://www.sciencedirect.com/science/article/pii/S0026269213001018

  5. Fouda, M., Radwan, A.: Int. J. Circuit Theory Appl. 42(10), 1092 (2013). doi:10.1002/cta.1907

  6. Radwan, A., Zidan, M.A., Salama, K.: In: 2010 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 861–864. IEEE (2010)

    Google Scholar 

  7. Radwan, A., Zidan, M.A., Salama, K.: In: 2010 International Conference on Microelectronics (ICM), pp. 284–287. IEEE (2010)

    Google Scholar 

  8. Elwakil, A.: Int. J. Electr. Eng. Educ. 43(3), 252 (2006)

    Google Scholar 

  9. Biolek, D., Biolek, Z., Biolkova, V.: In: European Conference on Circuit Theory and Design, ECCTD 2009, pp. 249–252. IEEE (2009)

    Google Scholar 

  10. Joglekar, Y., Wolf, S.: Eur. J. Phys. 30(4), 661 (2009)

    Google Scholar 

  11. Fouda, M., Radwan, A., Salama, K.: In: 2012 International Conference on Engineering and Technology (ICET), pp. 1–5. IEEE (2012)

    Google Scholar 

  12. Strukov, D., Snider, G., Stewart, D., Williams, R.: Nature 453(7191), 80 (2008)

    Google Scholar 

  13. Fouda, M., Khatib, M., Mosad, A., Radwan, A.: IEEE Trans. Circuits Syst. I: Regul. Pap. 60(10), 2701 (2013). doi:10.1109/TCSI.2013.2249172

  14. Khatib, M., Fouda, M., Mosad, A., Salama, K., Radwan, A.: In: 2012 Seventh International Conference on Computer Engineering & Systems (ICCES), pp. 98–102. IEEE (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed G. Radwan .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Radwan, A.G., Fouda, M.E. (2015). Memristor-Based Relaxation Oscillator Circuits. In: On the Mathematical Modeling of Memristor, Memcapacitor, and Meminductor. Studies in Systems, Decision and Control, vol 26. Springer, Cham. https://doi.org/10.1007/978-3-319-17491-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17491-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17490-7

  • Online ISBN: 978-3-319-17491-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics