Skip to main content
  • 543 Accesses

Abstract

This chapter discusses the chemical side of surface modification with an emphasis on surface functionalization for electrodes used in biosensors. To continue the discussion of the last chapter, it presents two different approaches for the functionalization of surfaces modified morphologically with standing nanopillars. The first approach uses a conducting polymer to entrap enzymes to the surface through electrodeposition, and the second approach uses self-assembled monolayer alkanethiols to tether enzymes to the surface. In each approach, case studies are presented with full procedural details to showcase how the surfaces modified with nanopillars can be optimally functionalized through the tuning of relevant processing parameters. To make it easier to follow, this chapter embeds the basic knowledge of electrochemistry (e.g., amperometry, cyclic voltammetry, impedimetry, and enzymatic kinetics, etc.) throughout the text as information in-need or on-demand. From a sensing-element perspective, two types of molecules are discussed: catalytic enzyme molecules (e.g., glucose oxidase) and affinity-binding molecules (e.g., avidin-biotin couple). Through three example cases this chapter also discusses operations of biosensors in terms of target detection, signal measurement, data analysis, and quantification of detection sensitivity through calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramanaviius, A., Ramanaviien, A., Malinauskas, A.: Electrochemical sensors based on conducting polymerpolypyrrole. Electrochim. Acta 51(27), 6025–6037 (2006)

    Article  Google Scholar 

  2. Wang, J., Nosang, M., Minhee, Y., Harold, M.: Glucose oxidase entrapped in polypyrrole on high-surface-area Pt electrodes: a model platform for sensitive electroenzymatic biosensors. J. Electroanal. Chem. 575:139–146 (2005)

    Article  Google Scholar 

  3. Chen, C., Jiang, Y., Kan, J.: A noninterference polypyrrole glucose biosensor. Biosens. Bioelectron. 22(5), 639–643 (2006)

    Article  Google Scholar 

  4. Uang, Y.M., Chow, T.C.: Criteria for designing a polypyrrole glucose biosensor by galvanostatic electropolymerization. Electroanalysis 14, 1564–1570 (2002)

    Article  Google Scholar 

  5. Ramanaviius, A., Kauait. A., Ramanaviien, A.: Polypyrrole-coated glucose oxidase nanoparticles for biosensor design. Sensors Actuators B 111–112, 532–539 (2005)

    Article  Google Scholar 

  6. Wang, J., Musameh, M.: Carbon-nanotubes doped polypyrrole glucose biosensor. Anal. Chim. Acta 539(1–2), 209–213 (2005)

    Article  Google Scholar 

  7. Yang, M., Qu, F., Lu, Y., He, Y., Shen, G., Yu, R.: Platinum nanowire nanoelectrode array for the fabrication of biosensors. Biomaterials 27(35), 5944–5950 (2006)

    Article  Google Scholar 

  8. Gao, M., Gordon, L.D.: Biosensors based on aligned carbon nanotubes coated with inherently conducting polymers. Electroanalysis 15, 1089–1094 (2001)

    Article  Google Scholar 

  9. Fortier, G., Brassard, E., Blanger, D.: Optimization of a polypyrrole glucose oxidase biosensor. Biosen. Bioelectron. 5(6), 473–490 (1990)

    Article  Google Scholar 

  10. Anandan, V., Yang, X., Kim, E., Rao, Y., Zhang, G.: Role of reaction kinetics and mass transport in glucose sensing with nanopillar array electrodes. J. Biol. Eng. 1(1), 5 (2007)

    Article  Google Scholar 

  11. Lambrechts, M., Sansen, W.M.C.: Biosensors: Microelectrochemical Devices. CRC, Boca Raton (1992)

    Google Scholar 

  12. Lee, S.J., Anandan, V., Zhang, G.: Electrochemical fabrication and evaluation of highly sensitive nanorod-modified electrodes for a biotin/avidin system. Biosens. Bioelectron. 23(7), 1117–1124 (2008)

    Article  Google Scholar 

  13. Chaki, N.K., Vijayamohanan, K.: Self-assembled monolayers as a tunable platform for biosensor applications. Biosens. Bioelectron. 17(1–2), 1–12 (2002)

    Article  Google Scholar 

  14. Ding, S.J., Chang, B.W., Wu, C.C., Lai, M.F., Chang, H.C.: Impedance spectral studies of self-assembly of alkanethiols with different chain lengths using different immobilization strategies on Au electrodes. Anal. Chim. Acta. 554(1–2), 43–51 (2005)

    Article  Google Scholar 

  15. Campuzano, S., Galvez, R., Pedrero, M., de Villena, F.J.M., Pingarron, J.M.: Preparation, characterization and application of alkanethiol self-assembled monolayers modified with tetrathiafulvalene and glucose oxidase at a gold disk electrode. J. Electroanal. Chem. 526(1–2), 92–100 (2002)

    Article  Google Scholar 

  16. Losic, D., Gooding, J.J., Shapter, J.G., Hibbert, D.B., Short, K.: The influence of the underlying gold substrate on glucose oxidase electrodes fabricated using self-assembled monolayer. Electroanalysis 13(17), 1385–1393 (2001)

    Article  Google Scholar 

  17. Walczak, M.M., Popenoe, D.D., Deinhammer, R.S., Lamp, B.D., Chung, C., Porter, M.D.: Reductive desorption of alkanethiolate monolayers at gold: a measure of surface coverage. Langmuir 7(11), 2687–2693 (1991)

    Article  Google Scholar 

  18. Sawaguchi, T., Sato, Y., Mizutani, F.: In situ STM imaging of individual molecules in two-component self-assembled monolayers of 3-mercaptopropionic acid and 1-decanethiol on Au(111). J. Electroanal. Chem. 496(1–2), 50–60 (2001)

    Article  Google Scholar 

  19. Widrig, C.A., Chung, C., Porter, M.D.: The electrochemical desorption of n-alkanethiol monolayers from polycrystalline Au and Ag electrodes. J. Electroanal. Chem. 310, 335–359 (1991)

    Article  Google Scholar 

  20. Imabayashi, S., Iida, M., Hobara, D., Feng, Z.Q., Niki, K., Kakiuchi, T.: Reductive desorption of carboxylic-acid-terminated alkanethiol monolayers from Au(111) surfaces J. Electroanal. Chem. 428, 33–38 (1997)

    Article  Google Scholar 

  21. Losic, D., Shapter, J.G., Gooding, J.J.: Influence of surface topography on alkanethiol SAMs assembled from solution and by microcontact printing. Langmuir 17(11), 3307–3316 (2001)

    Article  Google Scholar 

  22. More, S.D., Graaf, H., Baune, M., Wang, C., Urisu, T.: Influence of substrate roughness on the formation of aliphatic self-assembled monolayers (SAMs) on silicon (100). Jpn. J. Appl. Phys. 41, 4390 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zhang, G. (2015). Biochemical Surface Modification. In: Nanoscale Surface Modification for Enhanced Biosensing. Springer, Cham. https://doi.org/10.1007/978-3-319-17479-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17479-2_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17478-5

  • Online ISBN: 978-3-319-17479-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics