Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 992 Accesses

Abstract

Cosmology is the study of the evolution of our universe, from the Big Bang to the formation of galaxies.

Do not look at stars as bright spots only. Try to take in the vastness of the universe.

—Maria Mitchell

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that at the time of writing this thesis, there was still no consensus on whether the BICEP2 team had actually detected gravitational waves. By now it is clear that their data cannot give us conclusive evidence as their signal was dominated by galactic dust [18].

References

  1. V. Mukhanov, Physical Foundations of Cosmology (Cambridge University Press, 2005)

    Google Scholar 

  2. A. Sakharov, Violation of CP invariance, c asymmetry, and Baryon asymmetry of the universe. Pisma Zh. Eksp. Teor. Fiz. 5, 32–35 (1967)

    Google Scholar 

  3. V. Rubin, N. Thonnard, W.K.J. Ford, Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/. Astrophys. J. 238, 471 (1980)

    Google Scholar 

  4. Supernova Search Team Collaboration, A. G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009–1038 (1998). http://xxx.lanl.gov/abs/astro-ph/9805201

  5. Supernova Cosmology Project Collaboration, S. Perlmutter et al., Measurements of Omega and Lambda from 42 high redshift supernovae. Astrophys. J. 517, 565–586 (1999). http://xxx.lanl.gov/abs/astro-ph/9812133

  6. A.A. Starobinsky, Spectrum of relict gravitational radiation and the early state of the universe. JETP Lett. 30, 682–685 (1979)

    ADS  Google Scholar 

  7. K. Sato, First order phase transition of a vacuum and expansion of the universe. Mon. Not. Roy. Astron. Soc. 195, 467–479 (1981)

    Article  ADS  Google Scholar 

  8. D. Kazanas, Dynamics of the universe and spontaneous symmetry breaking. Astrophys. J. 241, L59–L63 (1980)

    Article  ADS  Google Scholar 

  9. A.H. Guth, The inflationary universe: a possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347–356 (1981)

    Article  ADS  Google Scholar 

  10. A.A. Penzias, R.W. Wilson, A measurement of excess antenna temperature at 4080-Mc/s. Astrophys. J. 142, 419–421 (1965)

    Article  ADS  Google Scholar 

  11. P. Peebles, R. Dicke, Origin of the globular star clusters. Astrophys. J. 154, 891 (1968)

    Article  ADS  Google Scholar 

  12. J.C. Mather, E. Cheng, D. Cottingham, R. Eplee, D. Fixsen et al., Measurement of the cosmic microwave background spectrum by the COBE FIRAS instrument. Astrophys. J. 420, 439–444 (1994)

    Article  ADS  Google Scholar 

  13. Boomerang Collaboration Collaboration, P. de Bernardis et al., A flat universe from high resolution maps of the cosmic microwave background radiation. Nature 404, 955–959 (2000). http://xxx.lanl.gov/abs/astro-ph/0004404

  14. WMAP Collaboration Collaboration, D. Spergel et al., First year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175–194 (2003). http://xxx.lanl.gov/abs/astro-ph/0302209

  15. Planck Collaboration, P. Ade et al., Planck 2013 results. I. Overview of products and scientific results. http://xxx.lanl.gov/abs/1303.5062

  16. Planck Collaboration Collaboration, P. Ade et al., Planck 2013 results. XXII. Constraints on inflation. http://xxx.lanl.gov/abs/1303.5082

  17. BICEP2 Collaboration Collaboration, P.A.R. Ade et al., BICEP2 I: Detection Of B-mode polarization at degree angular scales. http://xxx.lanl.gov/abs/1403.3985

  18. J. Cowen, Gravitational waves discovery now officially dead. Nature (2015)

    Google Scholar 

  19. R.M. Wald, General Relativity (The University of Chicago Press, Chicago, 1984)

    Google Scholar 

  20. A.R. Liddle, D.H. Lyth, Cosmological inflation and large-scale structure

    Google Scholar 

  21. S. Carroll, Spacetime and Geometry: An Introduction to General Relativity (BenjaminCummings, New York, 2003)

    Google Scholar 

  22. R. Hulse, J. Taylor, Discovery of a pulsar in a binary system. Astrophys. J. 195, L51–L53 (1975)

    Article  ADS  Google Scholar 

  23. LIGO Scientific Collaboration Collaboration, G. M. Harry, Advanced LIGO: The next generation of gravitational wave detectors. Class. Quant. Grav. 27, 084006 (2010)

    Google Scholar 

  24. P. Amaro-Seoane, S. Aoudia, S. Babak, P. Binetruy, E. Berti, et al., eLISA/NGO: Astrophysics and cosmology in the gravitational-wave millihertz regime. GW Notes 6, 4–110 (2013). http://xxx.lanl.gov/abs/1201.3621

  25. S. Dodelson, Modern Cosmology (Academic Press, Elsevier, 2003)

    Google Scholar 

  26. J.A. Peacock, Cosmological Physics (Cambridge University Press, Cambridge, 2001)

    Google Scholar 

  27. E. Noether, Invariant Variation Problems. Gott. Nachr. 235–257 (1918). http://xxx.lanl.gov/abs/physics/0503066

  28. V. Mukhanov, S. Winitzki, Physical Foundations of Cosmology (Cambridge University Press, Cambridge, 2007)

    Google Scholar 

  29. D. Baumann, TASI lectures on inflation. http://xxx.lanl.gov/abs/0907.5424

  30. A.D. Linde, A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems. Phys. Lett. B 108, 389–393 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  31. A. Albrecht, P.J. Steinhardt, Cosmology for grand unified theories with radiatively induced symmetry breaking. Phys. Rev. Lett. 48, 1220–1223 (1982)

    Article  ADS  Google Scholar 

  32. S. Hawking, I. Moss, Supercooled phase transitions in the very early universe. Phys. Lett. B 110, 35 (1982)

    Article  ADS  Google Scholar 

  33. A.R. Liddle, D.H. Lyth, COBE, gravitational waves, inflation and extended inflation. Phys. Lett. B 291, 391–398 (1992). http://xxx.lanl.gov/abs/astro-ph/9208007

  34. W. de Sitter, Einstein’s theory of gravitation and its astronomical consequences, third paper. Mon. Not. Roy. Astron. Soc. 78, 3–28 (1917)

    Article  ADS  Google Scholar 

  35. L. Alabidi, D.H. Lyth, Inflation models and observation. JCAP 0605, 016 (2006). http://xxx.lanl.gov/abs/astro-ph/0510441

  36. A.D. Linde, Hybrid inflation. Phys. Rev. D 49, 748–754 (1994). http://xxx.lanl.gov/abs/astro-ph/9307002

  37. D.H. Lyth, A. Riotto, Particle physics models of inflation and the cosmological density perturbation. Phys. Rept. 314, 1–146 (1999). http://xxx.lanl.gov/abs/hep-ph/9807278

  38. P. Dirac, Principles of Quantum Mechanics (Oxford University Press, Oxford, 1982)

    Google Scholar 

  39. A.I.M. Rae, Quantum Mechanics (CRC Press, New York, 2007)

    Google Scholar 

  40. T. Bunch, P. Davies, Quantum field theory in de sitter space: renormalization by point splitting. Proc. Roy. Soc. Lond. A360, 117–134 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  41. T.K. Misner, C.J. Wheeler, Gravitation

    Google Scholar 

  42. M. Schlosshauer, Decoherence and the Quantum-to-Classical Transition (Springer, Berlin, 2008)

    Google Scholar 

  43. D. Wands, K.A. Malik, D.H. Lyth, A.R. Liddle, A New approach to the evolution of cosmological perturbations on large scales. Phys. Rev. D 62, 043527 (2000). http://xxx.lanl.gov/abs/astro-ph/0003278

  44. J. Bond, G. Efstathiou, Cosmic background radiation anisotropies in universes dominated by nonbaryonic dark matter. Astrophys. J. 285, L45–L48 (1984)

    Article  ADS  Google Scholar 

  45. W. Hu, M.J. White, A CMB polarization primer. New Astron. 2, 323 (1997). http://xxx.lanl.gov/abs/astro-ph/9706147

  46. M. Kamionkowski, A. Kosowsky, A. Stebbins, A Probe of primordial gravity waves and vorticity. Phys. Rev. Lett. 78, 2058–2061 (1997). http://xxx.lanl.gov/abs/astro-ph/9609132

  47. U. Seljak, M. Zaldarriaga, Signature of gravity waves in polarization of the microwave background. Phys. Rev. Lett. 78, 2054–2057 (1997). http://xxx.lanl.gov/abs/astro-ph/9609169

  48. J.D. Jackson, Classical Electrodynamics

    Google Scholar 

  49. S. Chandrasekhar, Radiative Transfer (Dover Publications Inc., New York, 1960)

    Google Scholar 

  50. M. Zaldarriaga, Polarization of the microwave background in reionized models. Phys. Rev. D 55, 1822–1829 (1997). http://xxx.lanl.gov/abs/astro-ph/9608050

  51. R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. I. (Wiley-Interscience, New York, 1962)

    Google Scholar 

  52. M. Kamionkowski, A. Kosowsky, A. Stebbins, Statistics of cosmic microwave background polarization. Phys. Rev. D 55, 7368–7388 (1997). http://xxx.lanl.gov/abs/astro-ph/9611125

  53. M. Zaldarriaga, U. Seljak, An all sky analysis of polarization in the microwave background. Phys. Rev. D 55, 1830–1840 (1997). http://xxx.lanl.gov/abs/astro-ph/9609170

  54. W. Hu, M.J. White, CMB anisotropies: Total angular momentum method. Phys. Rev. D 56, 596–615 (1997). http://xxx.lanl.gov/abs/astro-ph/9702170

  55. C.R. Contaldi, J. Magueijo, L. Smolin, Anomalous CMB polarization and gravitational chirality. Phys. Rev. Lett. 101, 141101 (2008). http://xxx.lanl.gov/abs/0806.3082

  56. J. Kovac, E. Leitch, C. Pryke, J. Carlstrom, N. Halverson, et al., Detection of polarization in the cosmic microwave background using DASI. Nature 420, 772–787 (2002). http://xxx.lanl.gov/abs/astro-ph/0209478

  57. J. Errard, The new generation CMB B-mode polarization experiment: POLARBEAR. http://xxx.lanl.gov/abs/1011.0763

  58. B. Crill, P. Ade, E. Battistelli, S. Benton, R. Bihary, et al., SPIDER: A Balloon-borne Large-scale CMB Polarimeter. http://xxx.lanl.gov/abs/0807.1548

  59. M. Zaldarriaga, U. Seljak, Gravitational lensing effect on cosmic microwave background polarization. Phys. Rev. D 58, 023003 (1998). http://xxx.lanl.gov/abs/astro-ph/9803150

  60. SPTpol Collaboration Collaboration, D. Hanson et al., Detection of B-mode Polarization in the cosmic microwave background with data from the south pole telescope. Phys. Rev. Lett. 111, 141301 (2013). http://xxx.lanl.gov/abs/1307.5830

  61. L. Kofman, A.D. Linde, A.A. Starobinsky, Reheating after inflation. Phys. Rev. Lett. 73, 3195–3198 (1994). http://xxx.lanl.gov/abs/hep-th/9405187

  62. A. Dolgov, A.D. Linde, Baryon asymmetry in inflationary universe. Phys. Lett. B 116, 329 (1982)

    Article  ADS  Google Scholar 

  63. L. Abbott, E. Farhi, M.B. Wise, Particle production in the new inflationary cosmology. Phys. Lett. B 117, 29 (1982)

    Article  ADS  Google Scholar 

  64. L. Kofman, A.D. Linde, A.A. Starobinsky, Towards the theory of reheating after inflation. Phys. Rev. D 56, 3258–3295 (1997). http://xxx.lanl.gov/abs/hep-ph/9704452

  65. P.B. Greene, L. Kofman, A.D. Linde, A.A. Starobinsky, Structure of resonance in preheating after inflation. Phys. Rev. D 56, 6175–6192 (1997). http://xxx.lanl.gov/abs/hep-ph/9705347

  66. M.E. Peskin, D.V. Schroeder, An Introduction to Quantum Field Theory (Westview Press Inc., 1995)

    Google Scholar 

  67. D.G. Figueroa, Phenomenological and theoretical aspects of reheating. PhD thesis

    Google Scholar 

  68. A.D. Linde, Particle Physics and Inflationary Cosmology (Harwood, Chur, 1990)

    Book  Google Scholar 

  69. N.W. Mac Lachlan, Theory and Applications of Mathieu Functions

    Google Scholar 

  70. L. Landau, L. Lifshits, Mechanicss

    Google Scholar 

  71. M.S. Turner, Coherent scalar field oscillations in an expanding universe. Phys. Rev. D 28, 1243 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  72. A. e. Erdelyi, Higher Transcendental Functions (Bateman Manuscript Project), Vol. 3. (McGraw-Hill, New York, 1955)

    Google Scholar 

  73. D.I. Kaiser, Resonance structure for preheating with massless fields. Phys. Rev. D 57, 702–711 (1998). http://xxx.lanl.gov/abs/hep-ph/9707516

  74. B. Sathyaprakash, B. Schutz, Physics, astrophysics and cosmology with gravitational waves. Living Rev. Rel. 12, 2 (2009). http://xxx.lanl.gov/abs/0903.0338

  75. V.F. Mukhanov, H. Feldman, R.H. Brandenberger, Theory of cosmological perturbations. Part 1. Classical perturbations. Part 2. Quantum theory of perturbations. Part 3. Extensions. Phys. Rept. 215, 203–333 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  76. S. Weinberg, Cosmology (Oxford University Press, Oxford, 2008)

    Google Scholar 

  77. M. Kamionkowski, A. Kosowsky, M.S. Turner, Gravitational radiation from first order phase transitions. Phys. Rev. D 49, 2837–2851 (1994). http://xxx.lanl.gov/abs/astro-ph/9310044

  78. S.J. Huber, T. Konstandin, Gravitational wave production by collisions: more bubbles. JCAP 0809, 022 (2008). http://xxx.lanl.gov/abs/0806.1828

  79. C. Caprini, R. Durrer, G. Servant, The stochastic gravitational wave background from turbulence and magnetic fields generated by a first-order phase transition. JCAP 0912, 024 (2009). http://xxx.lanl.gov/abs/0909.0622

  80. C. Caprini, R. Durrer, T. Konstandin, G. Servant, General properties of the gravitational wave spectrum from phase transitions. Phys. Rev. D 79, 083519 (2009). http://xxx.lanl.gov/abs/0901.1661

  81. M. Hindmarsh, S.J. Huber, K. Rummukainen, D.J. Weir, Gravitational waves from the sound of a first order phase transition. Phys. Rev. Lett. 112, 041301 (2014). http://xxx.lanl.gov/abs/1304.2433

  82. J.-F. Dufaux, D.G. Figueroa, J. Garcia-Bellido, Gravitational waves from Abelian Gauge fields and cosmic strings at preheating. Phys. Rev. D 82, 083518 (2010). http://xxx.lanl.gov/abs/1006.0217

  83. E. Fenu, D.G. Figueroa, R. Durrer, J. Garcia-Bellido, Gravitational waves from self-ordering scalar fields. JCAP 0910, 005 (2009). http://xxx.lanl.gov/abs/0908.0425

  84. D.G. Figueroa, M. Hindmarsh, J. Urrestilla, Exact scale-invariant background of gravitational waves from cosmic defects. Phys. Rev. Lett. 110(10), 101302 (2013). http://xxx.lanl.gov/abs/1212.5458

  85. A. Vilenkin, Gravitational radiation from cosmic strings. Phys. Lett. B 107, 47–50 (1981)

    Article  ADS  Google Scholar 

  86. T. Vachaspati, A. Vilenkin, Gravitational radiation from cosmic strings. Phys. Rev. D 31, 3052 (1985)

    Article  ADS  Google Scholar 

  87. S. Olmez, V. Mandic, X. Siemens, Gravitational-wave stochastic background from kinks and cusps on cosmic strings. Phys. Rev. D 81, 104028 (2010). http://xxx.lanl.gov/abs/1004.0890

  88. S. Khlebnikov, I. Tkachev, Relic gravitational waves produced after preheating. Phys. Rev. D 56, 653–660 (1997). http://xxx.lanl.gov/abs/hep-ph/9701423

  89. R. Easther, E.A. Lim, Stochastic gravitational wave production after inflation. JCAP 0604, 010 (2006). http://xxx.lanl.gov/abs/astro-ph/0601617

  90. J. Garcia-Bellido, D.G. Figueroa, A. Sastre, A gravitational wave background from reheating after hybrid inflation. Phys. Rev. D 77, 043517 (2008). http://xxx.lanl.gov/abs/0707.0839

  91. J.F. Dufaux, A. Bergman, G.N. Felder, L. Kofman, J.-P. Uzan, Theory and numerics of gravitational waves from preheating after inflation. Phys. Rev. D 76, 123517 (2007). http://xxx.lanl.gov/abs/0707.0875

  92. D. Holz, Gravitational wave cosmology. Lectures given at “Essential Cosmology for the Next Generation/Cosmology on the Beach” Conference, Cabo San Lucas, Mexico, 13–17 Jan 2014

    Google Scholar 

  93. LIGO Scientific Collaboration, Virgo Collaboration Collaboration, J. Abadie et al., Search for Gravitational Waves from Compact Binary Coalescence in LIGO and Virgo Data from S5 and VSR1. Phys. Rev. D 82, 102001 (2010). http://xxx.lanl.gov/abs/1005.4655

  94. M. Maggiore, Gravitational wave experiments and early universe cosmology. Phys. Rept. 331, 283–367 (2000). http://xxx.lanl.gov/abs/gr-qc/9909001

  95. J. Crowder, N.J. Cornish, Beyond LISA: exploring future gravitational wave missions. Phys. Rev. D 72, 083005 (2005). http://xxx.lanl.gov/abs/gr-qc/0506015

  96. C. Grojean, G. Servant, Gravitational waves from phase transitions at the electroweak scale and beyond. Phys. Rev. D 75, 043507 (2007). http://xxx.lanl.gov/abs/hep-ph/0607107

  97. A. Cruise, R. Ingley, A prototype gravitational wave detector for 100-MHz. Class. Quant. Grav. 23, 6185–6193 (2006)

    Article  ADS  MATH  Google Scholar 

  98. A. Cruise, The potential for very high-frequency gravitational wave detection. Class. Quant. Grav. 29, 095003 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  99. T. Akutsu, S. Kawamura, A. Nishizawa, K. Arai, K. Yamamoto, et al., Search for a stochastic background of 100-MHz gravitational waves with laser interferometers. Phys. Rev. Lett. 101, 101101 (2008). http://xxx.lanl.gov/abs/0803.4094

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Bianca Bethke .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bethke, L.B. (2015). Introduction. In: Exploring the Early Universe with Gravitational Waves. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-17449-5_1

Download citation

Publish with us

Policies and ethics