Skip to main content

Dirichlet Eigenfunctions of the Square Membrane: Courant’s Property, and A. Stern’s and Å. Pleijel’s Analyses

  • Conference paper
  • First Online:
Analysis and Geometry

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 127))

Abstract

In this paper, we revisit Courant’s nodal domain theorem for the Dirichlet eigenfunctions of a square membrane, and the analyses of A. Stern and Å. Pleijel.

In memory of M. Salah Baouendi

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    English translation from German citation:

    [E1] ...  In dimension one, according to Sturm’s theorem (see footnote 2), the interval is divided into n subsets by the nodes of the nth eigenfunction. This rule no longer holds for multidimensional problems, ... It can be easily shown that on the sphere, for each eigenvalue, two or three appear as numbers of nodal domains, and that when ordering the eigenvalues in nondecreasing order the number of nodal domains 2 always reappears.

    [Q1] ...  We now want to show that for the square the number of nodal domains two always reappears.

    [K1] ...  We next want to show that for each eigenvalue there exists an eigenfunction whose nodal lines divide the sphere into two or three domains.

    [K2] ...  the number of nodal domains two appears for all eigenvalues \(\lambda _n = (2r+1)(2r+2)\qquad r=,1,2,\ldots \) and we now want to show that the number of nodal domains three always reappears for all eigenvalues

    $$ \lambda _n =2r (2r+1)\qquad r=1,2,\ldots $$
  2. 2.

    Journal de Mathématiques, T.1, 1836, pp. 106–186, 269–277, 375–444.

  3. 3.

    English translation from German citation:

    [Q2] ...  We consider the eigenvalues

    $$ \lambda _n= \lambda _{2r,1} = 4r^2 +1\,,\, r=1,2,\dots $$

    and the nodal lines of the associated eigenfunction

    $$ u_{2r,1} + u_{1,2r} =0\,, $$

    which, as can be easily proved by using graphic images, gives Fig. 7.

    [Q3] ...  If starting from \(\mu =1\) we decrease \(\mu \), then the double points of the nodal lines disappear simultaneously and in the same way as shown in Fig. 8. As the nodal set consists of one line without double point, the square becomes divided into two domains and this occurs for all eigenvalues \(\lambda _{n} = \lambda _{2r,1}=4r^2+1\,\) (\(r=1,2,\dots )\).

  4. 4.

    English translation from German citation:

    [I1 ...  In order to determine the typical course of the nodal lines, we have similar key points as for the sphere. If we superimpose the systems of nodal lines of \(u_{\ell ,m}\) and \(u_{m,\ell }\), then for \(\mu >0\) (\(<0\)) the nodal lines can only visit the domains for which the two functions have opposite (same) signs.

    [I2] ...  Moreover all the nodal lines associated with the eigenvalue \(\lambda _{\ell ,m}\) should meet all the crossing points between the nodal sets \(u_{\ell ,m}=0\) and \(u_{m,\ell }=0\), hence going through \((\ell -1)^2 + (m-1)^2\) fixed points ...

  5. 5.

    ‘Schraffieren’, see [20, tag I1], in the spherical case.

  6. 6.

    A. Stern and H. Lewy were both students of R. Courant at about the same time, 1925. H. Lewy does however not refer to A. Stern’s Thesis in his paper. We refer to [3] for a further discussion.

References

  1. C. Bandle. Isoperimetric Inequalities and Applications (Pitman Publishing Inc., Lonon, 1980)

    Google Scholar 

  2. P. Bérard. Inégalités isopérimétriques et applications. Domaines nodaux des fonctions propres. SEDP (Polytechnique), Exposé 11 (1981–1982). http://www.numdam.org/item?id=SEDP_1981-1982____A10_0

  3. P. Bérard, B. Helffer, A. Stern’s analysis of the nodal sets of some families of spherical harmonics revisited. Preprint (July 2014). arXiv:1407.5564

  4. P. Bérard, D. Meyer, Inégalités isopérimétriques et applications. Annales Scientifiques École Normale Supérieure 15, 513–541 (1982)

    MATH  Google Scholar 

  5. V. Bonnaillie-Noël, Pictures of nodal domains for the square with Dirichlet boundary conditions. http://www.math.ens.fr/~bonnaillie/Simulations/LaplacienCarre/LapCarre.html

  6. R. Courant, Ein allgemeiner Satz zur Theorie der Eigenfunktionen selbstadjungierter Differentialausdrücke. Nachrichten der Akademie der Wissenschaften zu Göttingen 81–84 (1923)

    Google Scholar 

  7. R. Courant, D. Hilbert. Methods of Mathematical Physics, vol. 1 (Interscience, New York, 1953)

    Google Scholar 

  8. R. Courant, D. Hilbert, Methoden der Mathematischen Physik I. Dritte Auflage. Heidelberger Taschenbücher Band 30 (Springer, Berlin, 1968)

    Google Scholar 

  9. Rayleigh-Faber-Krahn. Encyclopedia of Mathematics. http://www.encyclopediaofmath.org/index.php?title=Rayleigh-Faber-Krahn_inequality&oldid=22969

  10. G. Gauthier-Shalom, K. Przybytkowski, Description of a nodal set on \({\mathbb{T}}^2\). McGill University Research Report (2006) (unpublished)

    Google Scholar 

  11. B. Helffer, T. Hoffmann-Ostenhof, A review on large k minimal spectral k-partitions and Pleijel’s theorem. in Contemporary Mathematics 640 Spectral Theory and Partial Differential Equations, ed. by G. Eskin, L. Friedlander, J. Garnett editors (2015), p. 39–58

    Google Scholar 

  12. B. Helffer, T. Hoffmann-Ostenhof, S. Terracini, Nodal domains and spectral minimal partitions. Annales de l’Institut Henri Poincaré Analyse Non Linéaire 26, 101–138 (2009)

    Google Scholar 

  13. H. Lewy, On the minimum number of domains in which the nodal lines of spherical harmonics divide the sphere. Commun. Partial Differ. Equ. 2(12), 1233–1244 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  14. J. Leydold, On the number of nodal domains of spherical harmonics. Topology 35, 301–321 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. W. Magnus, F. Oberhettinger, R.P. Soni, Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edn. (Springer, Berlin, 1966)

    Book  MATH  Google Scholar 

  16. J. Peetre, A generalization of Courant’s nodal domain theorem. Mathematica Scandinavica 5, 15–20 (1957)

    MathSciNet  MATH  Google Scholar 

  17. Å. Pleijel, Remarks on Courant’s nodal theorem. Commun. Pure Appl. Math. 9, 543–550 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  18. F. Pockels, Über die partielle Differentialgleichung \(\Delta u + k^2 u=0\) and deren Auftreten in mathematischen Physik. Historical Mathematics Monographs. Cornell University (Teubner, Leipzig, 1891). http://ebooks.library.cornell.edu/cgi/t/text/text-idx?c=math;cc=math;view=toc;subview=short;idno=00880001

  19. A. Stern, Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen. Inaugural-Dissertation zur Erlangung der Doktorwürde der Hohen Mathematisch-Naturwissenschaftlichen Fakultät der Georg August-Universität zu Göttingen (30 Juli 1924), Druck der Dieterichschen Universitäts-Buchdruckerei (W. Fr. Kaestner), Göttingen, 1925

    Google Scholar 

  20. A. Stern, Bemerkungen über asymptotisches Verhalten von Eigenwerten und Eigenfunktionen. Inaugural-Dissertation zur Erlangung der Doktorwürde der Hohen Mathematisch-Naturwissenschaftlichen Fakultät der Georg August-Universität zu Göttingen (30 Juli 1924). Extracts and annotations by P. Bérard and B. Helffer. http://www-fourier.ujf-grenoble.fr/~pberard/R/stern-1925-thesis-partial-reprod.pdf

  21. A. Vogt, Wissenschaftlerinnen in Kaiser-Wilhelm-Instituten. A-Z. Veröffentlichungen aus dem Archiv zur Geschichte der Max-Planck-Gesellschaft, Bd. 12 (Berlin, 2008). 2. erw. Aufl

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Bérard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Bérard, P., Helffer, B. (2015). Dirichlet Eigenfunctions of the Square Membrane: Courant’s Property, and A. Stern’s and Å. Pleijel’s Analyses. In: Baklouti, A., El Kacimi, A., Kallel, S., Mir, N. (eds) Analysis and Geometry. Springer Proceedings in Mathematics & Statistics, vol 127. Springer, Cham. https://doi.org/10.1007/978-3-319-17443-3_6

Download citation

Publish with us

Policies and ethics