Skip to main content

Pathogenic Origins of Fibrosis in the Hypertensive Heart Disease that Accompanies Aldosteronism

  • Chapter
  • First Online:
Cardiac Fibrosis and Heart Failure: Cause or Effect?

Abstract

Cardiac fibrosis interferes with the structural homogeneity of the myocardium in hypertensive heart disease (HHD). Its morphologic presentations include: widely scattered microscopic scars which have replaced myocytes lost to necrosis; and a perivascular fibrosis of intramural coronary arteries. An animal model of aldosterone/salt treatment has been used to examine the pathogenic origins of myocyte necrosis and coronary vasculopathy. A common cellular/subcellular pathway involving parathyroid hormone-mediated, intracellular Ca2+ overload-induced, mitochondrial-derived oxidative stress was identified. Myofibroblasts and their secretome which includes de novo generation of angiotensin peptides, are responsible for fibrogenesis at these sites. Cardioprotection includes upstream prevention of myocyte loss and vascular remodeling or downstream ablation of myofibroblasts and ongoing fibrogenesis at these sites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Shapiro LM, McKenna WJ (1984) Left ventricular hypertrophy: relation of structure to diastolic function in hypertension. Br Heart J 51:637–642

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Díez J (2009) Towards a new paradigm about hypertensive heart disease. Med Clin North Am 93:637–645

    Article  PubMed  Google Scholar 

  3. Weber KT, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC (2013) Myofibroblast-mediated mechanisms of pathological remodelling of the heart. Nat Rev Cardiol 10:15–26

    Article  CAS  PubMed  Google Scholar 

  4. Weber KT, Janicki JS, Shroff SG, Pick R, Chen RM, Bashey RI (1988) Collagen remodeling of the pressure-overloaded, hypertrophied nonhuman primate myocardium. Circ Res 62:757–765

    Article  CAS  PubMed  Google Scholar 

  5. Owens GK (1989) Growth response of aortic smooth muscle cells in hypertension. In: Lee RMKW (ed) Blood vessel changes in hypertension: structure and function. CRC Press, Boca Raton, pp 45–63

    Google Scholar 

  6. Cox RH (1989) Mechanical properties of arteries in hypertension. In: Lee RMKW (ed) Blood vessel changes in hypertension: structure and function, vol I. CRC Press, Boca Raton, pp 65–98

    Google Scholar 

  7. Darrow DC, Miller HC (1942) The production of cardiac lesions by repeated injections of desoxycorticosterone acetate. J Clin Invest 21:601–611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Brilla CG, Pick R, Tan LB, Janicki JS, Weber KT (1990) Remodeling of the rat right and left ventricle in experimental hypertension. Circ Res 67:1355–1364

    Article  CAS  PubMed  Google Scholar 

  9. Sun Y, Ramires FJA, Weber KT (1997) Fibrosis of atria and great vessels in response to angiotensin II or aldosterone infusion. Cardiovasc Res 35:138–147

    Article  CAS  PubMed  Google Scholar 

  10. Weber KT (2001) Aldosterone in congestive heart failure. N Engl J Med 345:1689–1697

    Article  CAS  PubMed  Google Scholar 

  11. Young M, Fullerton M, Dilley R, Funder J (1994) Mineralocorticoids, hypertension, and cardiac fibrosis. J Clin Invest 93:2578–2583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Garnier A, Bendall JK, Fuchs S, Escoubet B, Rochais F, Hoerter J, Nehme J, Ambroisine ML, De Angelis N, Morineau G, d’Estienne P, Fischmeister R, Heymes C, Pinet F, Delcayre C (2004) Cardiac specific increase in aldosterone production induces coronary dysfunction in aldosterone synthase-transgenic mice. Circulation 110:1819–1825

    Article  CAS  PubMed  Google Scholar 

  13. Somers MJ, Mavromatis K, Galis ZS, Harrison DG (2000) Vascular superoxide production and vasomotor function in hypertension induced by deoxycorticosterone acetate-salt. Circulation 101:1722–1728

    Article  CAS  PubMed  Google Scholar 

  14. Pu Q, Neves MF, Virdis A, Touyz RM, Schiffrin EL (2003) Endothelin antagonism on aldosterone-induced oxidative stress and vascular remodeling. Hypertension 42:49–55

    Article  CAS  PubMed  Google Scholar 

  15. Virdis A, Neves MF, Amiri F, Viel E, Touyz RM, Schiffrin EL (2002) Spironolactone improves angiotensin-induced vascular changes and oxidative stress. Hypertension 40:504–510

    Article  CAS  PubMed  Google Scholar 

  16. Sun Y, Zhang J, Lu L, Chen SS, Quinn MT, Weber KT (2002) Aldosterone-induced inflammation in the rat heart. Role of oxidative stress. Am J Pathol 161:1773–1781

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Gandhi MS, Deshmukh PA, Kamalov G, Zhao T, Zhao W, Whaley JT, Tichy JR, Bhattacharya SK, Ahokas RA, Sun Y, Gerling IC, Weber KT (2008) Causes and consequences of zinc dyshomeostasis in rats with chronic aldosteronism. J Cardiovasc Pharmacol 52:245–252

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Fleckenstein A (1967) [Metabolic problems in myocardium insufficiency] [German]. Verh Dtsch Ges Pathol 51:15–30

    CAS  PubMed  Google Scholar 

  19. Chhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z, Smith RA, Gerling IC, Weber KT (2005) Hyperparathyroidism and the calcium paradox of aldosteronism. Circulation 111:871–878

    Article  CAS  PubMed  Google Scholar 

  20. Ahokas RA, Sun Y, Bhattacharya SK, Gerling IC, Weber KT (2005) Aldosteronism and a proinflammatory vascular phenotype. Role of Mg2+, Ca2+ and H2O2 in peripheral blood mononuclear cells. Circulation 111:51–57

    Article  CAS  PubMed  Google Scholar 

  21. Ahokas RA, Warrington KJ, Gerling IC, Sun Y, Wodi LA, Herring PA, Lu L, Bhattacharya SK, Postlethwaite AE, Weber KT (2003) Aldosteronism and peripheral blood mononuclear cell activation. A neuroendocrine-immune interface. Circ Res 93:e124–e135

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Chhokar VS, Sun Y, Bhattacharya SK, Ahokas RA, Myers LK, Xing Z, Smith RA, Gerling IC, Weber KT (2004) Loss of bone minerals and strength in rats with aldosteronism. Am J Physiol Heart Circ Physiol 287:H2023–H2026

    Article  CAS  PubMed  Google Scholar 

  23. Fujita T, Palmieri GM (2000) Calcium paradox disease: calcium deficiency prompting secondary hyperparathyroidism and cellular calcium overload. J Bone Miner Metab 18:109–125

    Article  CAS  PubMed  Google Scholar 

  24. Smogorzewski M, Zayed M, Zhang YB, Roe J, Massry SG (1993) Parathyroid hormone increases cytosolic calcium concentration in adult rat cardiac myocytes. Am J Physiol 264:H1998–H2006

    CAS  PubMed  Google Scholar 

  25. Perna AF, Smogorzewski M, Massry SG (1989) Effects of verapamil on the abnormalities in fatty acid oxidation of myocardium. Kidney Int 36:453–457

    Article  CAS  PubMed  Google Scholar 

  26. Kamalov G, Ahokas RA, Zhao W, Johnson PL, Shahbaz AU, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2010) Temporal responses to intrinsically coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria during aldosteronism. Am J Physiol Heart Circ Physiol 298:H385–H394

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Vidal A, Sun Y, Bhattacharya SK, Ahokas RA, Gerling IC, Weber KT (2006) Calcium paradox of aldosteronism and the role of the parathyroid glands. Am J Physiol Heart Circ Physiol 290:H286–H294

    Article  CAS  PubMed  Google Scholar 

  28. Selektor Y, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2008) Cinacalcet and the prevention of secondary hyperparathyroidism in rats with aldosteronism. Am J Med Sci 335:105–110

    Article  PubMed  Google Scholar 

  29. Thomas M, Vidal A, Bhattacharya SK, Ahokas RA, Sun Y, Gerling IC, Weber KT (2007) Zinc dyshomeostasis in rats with aldosteronism. Response to spironolactone. Am J Physiol Heart Circ Physiol 293:H2361–H2366

    Article  CAS  PubMed  Google Scholar 

  30. Selektor Y, Parker RB, Sun Y, Zhao W, Bhattacharya SK, Weber KT (2008) Tissue 65zinc translocation in a rat model of chronic aldosteronism. J Cardiovasc Pharmacol 51:359–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Aureli L, Gioia M, Cerbara I, Monaco S, Fasciglione GF, Marini S, Ascenzi P, Topai A, Coletta M (2008) Structural bases for substrate and inhibitor recognition by matrix metalloproteinases. Curr Med Chem 15:2192–2222

    Article  CAS  PubMed  Google Scholar 

  32. Kamalov G, Deshmukh PA, Baburyan NY, Gandhi MS, Johnson PL, Ahokas RA, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2009) Coupled calcium and zinc dyshomeostasis and oxidative stress in cardiac myocytes and mitochondria of rats with chronic aldosteronism. J Cardiovasc Pharmacol 53:414–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wang J, Song Y, Elsherif L, Song Z, Zhou G, Prabhu SD, Saari JT, Cai L (2006) Cardiac metallothionein induction plays the major role in the prevention of diabetic cardiomyopathy by zinc supplementation. Circulation 113:544–554

    Article  CAS  PubMed  Google Scholar 

  34. Karagulova G, Yue Y, Moreyra A, Boutjdir M, Korichneva I (2007) Protective role of intracellular zinc in myocardial ischemia/reperfusion is associated with preservation of protein kinase C isoforms. J Pharmacol Exp Ther 321:517–525

    Article  CAS  PubMed  Google Scholar 

  35. Kamalov G, Ahokas RA, Zhao W, Zhao T, Shahbaz AU, Johnson PL, Bhattacharya SK, Sun Y, Gerling IC, Weber KT (2010) Uncoupling the coupled calcium and zinc dyshomeostasis in cardiac myocytes and mitochondria seen in aldosteronism. J Cardiovasc Pharmacol 55:248–254

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Chvapil M, Owen JA (1977) Effect of zinc on acute and chronic isoproterenol induced heart injury. J Mol Cell Cardiol 9:151–159

    Article  CAS  PubMed  Google Scholar 

  37. Singal PK, Dhillon KS, Beamish RE, Dhalla NS (1981) Protective effect of zinc against catecholamine-induced myocardial changes electrocardiographic and ultrastructural studies. Lab Invest 44:426–433

    Google Scholar 

  38. Muller DN, Mervaala EM, Schmidt F, Park JK, Dechend R, Genersch E, Breu V, Löffler BM, Ganten D, Schneider W, Haller H, Luft FC (2000) Effect of bosentan on NF-κB, inflammation, and tissue factor in angiotensin II-induced end-organ damage. Hypertension 36:282–290

    Article  CAS  PubMed  Google Scholar 

  39. Müller DN, Mervaala EM, Dechend R, Fiebeler A, Park JK, Schmidt F, Theuer J, Breu V, Mackman N, Luther T, Schneider W, Gulba D, Ganten D, Haller H, Luft FC (2000) Angiotensin II (AT1) receptor blockade reduces vascular tissue factor in angiotensin II-induced cardiac vasculopathy. Am J Pathol 157:111–122

    Article  PubMed Central  PubMed  Google Scholar 

  40. Park JK, Muller DN, Mervaala EM, Dechend R, Fiebeler A, Schmidt F, Bieringer M, Schafer O, Lindschau C, Schneider W, Ganten D, Luft FC, Haller H (2000) Cerivastatin prevents angiotensin II-induced renal injury independent of blood pressure- and cholesterol-lowering effects. Kidney Int 58:1420–1430

    Article  CAS  PubMed  Google Scholar 

  41. Park JK, Fiebeler A, Muller DN, Mervaala EM, Dechend R, Abou-Rebyeh F, Luft FC, Haller H (2002) Lacidipine inhibits adhesion molecule and oxidase expression independent of blood pressure reduction in angiotensin-induced vascular injury. Hypertension 39(2 Pt 2):685–689

    Article  CAS  PubMed  Google Scholar 

  42. Rocha R, Rudolph AE, Frierdich GE, Nachowiak DA, Kekec BK, Blomme EA, McMahon EG, Delyani JA (2002) Aldosterone induces a vascular inflammatory phenotype in the rat heart. Am J Physiol 283:H1802–H1810

    CAS  Google Scholar 

  43. Muller DN, Dechend R, Mervaala EM, Park JK, Schmidt F, Fiebeler A, Theuer J, Breu V, Ganten D, Haller H, Luft FC (2000) NF-κB inhibition ameliorates angiotensin II-induced inflammatory damage in rats. Hypertension 35(1 Pt 2):193–201

    Article  CAS  PubMed  Google Scholar 

  44. Mervaala EM, Müller DN, Park JK, Schmidt F, Löhn M, Breu V, Dragun D, Ganten D, Haller H, Luft FC (1999) Monocyte infiltration and adhesion molecules in a rat model of high human renin hypertension. Hypertension 33(1 Pt 2):389–395

    Article  CAS  PubMed  Google Scholar 

  45. Ammarguellat FZ, Gannon PO, Amiri F, Schiffrin EL (2002) Fibrosis, matrix metalloproteinases, and inflammation in the heart of DOCA-salt hypertensive rats: role of ETA receptors. Hypertension 39(Part 2):679–684

    Article  CAS  PubMed  Google Scholar 

  46. Mervaala E, Finckenberg P, Lapatto R, Muller DN, Park JK, Dechend R, Ganten D, Vapaatalo H, Luft FC (2003) Lipoic acid supplementation prevents angiotensin II-induced renal injury. Kidney Int 64:501–508

    Article  CAS  PubMed  Google Scholar 

  47. Theuer J, Dechend R, Muller DN, Park JK, Fiebeler A, Barta P, Ganten D, Haller H, Dietz R, Luft FC (2002) Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats. BMC Cardiovasc Disord 2 (1[Epub]):3

    Article  PubMed Central  PubMed  Google Scholar 

  48. Touyz RM, Schiffrin EL (1996) Angiotensin II and vasopressin modulate intracellular free magnesium in vascular smooth muscle cells through Na+-dependent protein kinase C pathways. J Biol Chem 271:24353–24358

    Article  CAS  PubMed  Google Scholar 

  49. Delva P, Pastori C, Degan M, Montesi G, Brazzarola P, Lechi A (2000) Intralymphocyte free magnesium in patients with primary aldosteronism: aldosterone and lymphocyte magnesium homeostasis. Hypertension 35:113–117

    Article  CAS  PubMed  Google Scholar 

  50. Gerling IC, Sun Y, Ahokas RA, Wodi LA, Bhattacharya SK, Warrington KJ, Postlethwaite AE, Weber KT (2003) Aldosteronism: an immunostimulatory state precedes the proinflammatory/fibrogenic cardiac phenotype. Am J Physiol Heart Circ Physiol 285:H813–H821

    Article  CAS  PubMed  Google Scholar 

  51. Perry HM, 3rd, Chappel JC, Bellorin-Font E, Tamao J, Martin KJ, Teitelbaum SL (1984) Parathyroid hormone receptors in circulating human mononuclear leukocytes. J Biol Chem 259:5531–5535

    CAS  PubMed  Google Scholar 

  52. Klinger M, Alexiewicz JM, Linker-Israeli M, Pitts TO, Gaciong Z, Fadda GZ, Massry SG (1990) Effect of parathyroid hormone on human T cell activation. Kidney Int 37:1543–1551

    Article  CAS  PubMed  Google Scholar 

  53. Alexiewicz JM, Gaciong Z, Klinger M, Linker-Israeli M, Pitts TO, Massry SG (1990) Evidence of impaired T cell function in hemodialysis patients: potential role for secondary hyperparathyroidism. Am J Nephrol 10:495–501

    Article  CAS  PubMed  Google Scholar 

  54. Ori Y, Korzets A, Malachi T, Gafter U, Breitbart H (1999) Impaired lymphocyte calcium metabolism in end-stage renal disease: enhanced influx, decreased efflux, and reduced response to mitogen. J Lab Clin Med 133:391–400

    Article  CAS  PubMed  Google Scholar 

  55. Yang F, Nickerson PA (1988) Effect of parathyroidectomy on arterial hypertrophy, vascular lesions, and aortic calcium content in deoxycorticosterone-induced hypertension. Res Exp Med (Berl) 188:289–297

    Article  CAS  Google Scholar 

  56. Reth M (2002) Hydrogen peroxide as second messenger in lymphocyte activation. Nat Immunol 3:1129–1134

    Article  CAS  PubMed  Google Scholar 

  57. Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ, Thabet SR, Vinh A, Weyand CM (2011) Inflammation, immunity, and hypertension. Hypertension 57:132–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Laurent GJ (1987) Dynamic state of collagen: pathways of collagen degradation in vivo and their possible role in regulation of collagen mass. Am J Physiol 252:C1–C9

    CAS  PubMed  Google Scholar 

  59. Sun Y, Weber KT (1996) Angiotensin converting enzyme and myofibroblasts during tissue repair in the rat heart. J Mol Cell Cardiol 28:851–858

    Article  CAS  PubMed  Google Scholar 

  60. Al Darazi F, Zhao W, Zhao T, Sun Y, Marion TN, Ahokas RA, Bhattacharya SK, Gerling IC, Weber KT (2014) Small dedifferentiated cardiomyocytes bordering on microdomains of fibrosis: evidence for reverse remodeling with assisted recovery. J Cardiovasc Pharmacol 64:237–246

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

This work was supported, in part, by NIH grants R01HL073043, R01HL090867 and R01HL096813 (KTW). Its contents are solely the responsibility of the authors and do not necessarily represent the official views of the NIH. Authors have no conflicts of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl T. Weber MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

McCullough, R., Sun, Y., Newman, K., Ramanathan, K., Guntaka, R., Weber, K. (2015). Pathogenic Origins of Fibrosis in the Hypertensive Heart Disease that Accompanies Aldosteronism. In: Dixon, I., Wigle, J. (eds) Cardiac Fibrosis and Heart Failure: Cause or Effect?. Advances in Biochemistry in Health and Disease, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-17437-2_6

Download citation

Publish with us

Policies and ethics