Skip to main content

Mechanical and Matrix Regulation of Valvular Fibrosis

  • Chapter
  • First Online:

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 13))

Abstract

The aortic valve lies in, arguably, one of the more complex local mechanobiological environments in the body. The inherent intricacy of this microenvironment results in multiple homeostatic mechanisms, but also a wide variety of putative disease pathways by which valve function can be compromised. Aortic valve disease (AVD) is a cell-mediated pathology whose initial stages are characterized by unchecked matrix dysregulation, leaflet thickening, and widespread fibrosis. The valve itself is composed of multiple cell populations, including endothelial cells that are sensitive to blood flow-induced shear stresses and multipotent mesenchymal progenitors which are influenced by both the mechanical properties and composition of the surrounding extracellular matrix. Dynamic mechanical loading and shear stresses over the cardiac cycle, an irregular three-dimensional shape, and a non-uniform matrix composition further influence these cellular responses. There is also abundant biochemical signaling in the aortic root, with molecular factors either produced by valve cells or transported to the root via blood flow. When these mechanical/biochemical processes become deregulated as a result of insults to their constituent components, resident valvular cells are driven to undergo myofibroblastic differentiation, a program of valvular fibrosis sets in, and valve function is compromised. Valve dysfunction affects the cardiac environment as well, as impaired opening and reductions in orifice area alter myocardial mechanics and often result in hypertrophy and/or fibrosis of the left ventricle. In this chapter, we use the aortic valve as a model tissue to discuss causative mechanisms of cardiovascular fibrosis, including the contributions of mechanotransduction, matrix dysregulation, and biochemical signaling.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

5-HT:

5-hydroxytryptamine (serotonin)

5-HT2A :

5-hydroxytryptamine receptor 2A

α-SMA:

α-smooth muscle actin

ACEi:

Angiotensin converting enzyme inhibitor

ARB:

Angiotensin receptor blocker

AVD:

Aortic valve disease

BMP:

Bone morphogenic protein

CAVD:

Calcific aortic valve disease

CNP:

C-type natriuretic peptide

EC:

Endothelial cell (vascular)

ECM:

Extracellular matrix

EndMT:

Endothelial-to-mesenchymal transition

FA:

Focal adhesion

FAK:

Focal adhesion kinase

FGF-2:

Basic fibroblast growth factor-2

GAP:

GTPase-activating protein

GEF:

Guanine nucleotide exchange factor

LAP:

Latency associated peptide

LC:

Left coronary (cusp)

LLC:

Large latent complex

LTBP-1:

Latent TGF-β1 binding protein-1

mDia:

Mammalian diaphanous-related formin

MyHC:

Heavy chain smooth muscle myosin

MLC:

Myosin light chain

MMP:

Matrix metalloproteinase

MRTF-A:

Myocardin-related transcription factor-A

NC:

Non-coronary (cusp)

NPR-B:

Natriuretic peptide receptor-B

PKG:

Protein kinase-G

RC:

Right coronary (cusp)

ROCK:

Rho-associated protein kinase

SRF:

Serum response factor

TGF-β1:

Transforming growth factor-β1

TGFβRI/II:

TGFβ receptor I/II

TIMPs:

Tissue inhibitors of metalloproteinases

TNFα :

Tumor necrosis factor-α

VEC:

Valvular endothelial cell

VIC:

Valvular interstitial cell

References

  1. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689

    CAS  PubMed  Google Scholar 

  2. Moore SW, Keller RE, Koehl MA (1995) The dorsal involuting marginal zone stiffens anisotropically during its convergent extension in the gastrula of Xenopus laevis. Development 121(10):3131–3140

    CAS  PubMed  Google Scholar 

  3. Kullberg R (1987) Stretch-activated ion channels in bacteria and animal cell membranes. Trends Neurosci 10(10):387–388

    CAS  Google Scholar 

  4. van der Flier A, Sonnenberg A (2001) Function and interactions of integrins. Cell Tissue Res 305(3):285–298

    PubMed  Google Scholar 

  5. Li YS, Haga JH, Chien S (2005) Molecular basis of the effects of shear stress on vascular endothelial cells. J Biomech 38(10):1949–1971

    PubMed  Google Scholar 

  6. Heydemann A, McNally EM (2007) Consequences of disrupting the dystrophin-sarcoglycan complex in cardiac and skeletal myopathy. Trends Cardiovasc Med 17(2):55–59

    CAS  PubMed  Google Scholar 

  7. Klein-Nulend J, Bacabac RG, Veldhuijzen JP, Van Loon JJ (2003) Microgravity and bone cell mechanosensitivity. Adv Space Res 32(8):1551–1559

    CAS  PubMed  Google Scholar 

  8. Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O'Brien KD (1994) Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation 90(2):844–853

    CAS  PubMed  Google Scholar 

  9. Sim EK, Muskawad S, Lim CS, Yeo JH, Lim KH, Grignani RT, Durrani A, Lau G, Duran C (2003) Comparison of human and porcine aortic valves. Clin Anat 16(3):193–196

    PubMed  Google Scholar 

  10. Thubrikar M (1990) The aortic valve. CRC Press, Boca Raton

    Google Scholar 

  11. Schoen FJ (1997) Aortic valve structure-function correlations: role of elastic fibers no longer a stretch of the imagination. J Heart Valve Dis 6(1):1–6

    CAS  PubMed  Google Scholar 

  12. Schoen FJ (2012) Mechanisms of function and disease of natural and replacement heart valves. Annu Rev Pathol 7:161–183

    CAS  PubMed  Google Scholar 

  13. Schoen FJ (2008) Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation 118(18):1864–1880

    PubMed  Google Scholar 

  14. Sacks MS, David Merryman W, Schmidt DE (2009) On the biomechanics of heart valve function. J Biomech 42(12):1804–1824

    PubMed Central  PubMed  Google Scholar 

  15. Tseng H, Grande-Allen KJ (2011) Elastic fibers in the aortic valve spongiosa: a fresh perspective on its structure and role in overall tissue function. Acta Biomater 7(5):2101–2108

    CAS  PubMed Central  PubMed  Google Scholar 

  16. Zhao R, Sider KL, Simmons CA (2011) Measurement of layer-specific mechanical properties in multilayered biomaterials by micropipette aspiration. Acta Biomater 7(3):1220–1227

    CAS  PubMed  Google Scholar 

  17. Sewell-Loftin MK, Brown CB, Baldwin HS, Merryman WD (2012) A novel technique for quantifying mouse heart valve leaflet stiffness with atomic force microscopy. J Heart Valve Dis 21(4):513–520

    PubMed Central  PubMed  Google Scholar 

  18. Pho M, Lee W, Watt DR, Laschinger C, Simmons CA, McCulloch CA (2008) Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am J Physiol Heart Circ Physiol 294(4):H1767–H1778

    CAS  PubMed  Google Scholar 

  19. Chen JH, Yip CY, Sone ED, Simmons CA (2009) Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am J Pathol 174(3):1109–1119

    CAS  PubMed Central  PubMed  Google Scholar 

  20. Wang H, Sridhar B, Leinwand LA, Anseth KS (2013) Characterization of cell subpopulations expressing progenitor cell markers in porcine cardiac valves. PloS ONE 8(7):e69667

    CAS  PubMed Central  PubMed  Google Scholar 

  21. Nomura A, Seya K, Yu Z, Daitoku K, Motomura S, Murakami M, Fukuda I, Furukawa K (2013) CD34-negative mesenchymal stem-like cells may act as the cellular origin of human aortic valve calcification. Biochem Biophys Res Commun 440(4):780–785

    CAS  PubMed  Google Scholar 

  22. Taylor PM, Batten P, Brand NJ, Thomas PS, Yacoub MH (2003) The cardiac valve interstitial cell. Int J Biochem Cell Biol 35(2):113–118

    CAS  PubMed  Google Scholar 

  23. Moraes C, Likhitpanichkul M, Lam CJ, Beca BM, Sun Y, Simmons CA (2013) Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells. Integr Biol (Camb) 5(4):673–680

    CAS  Google Scholar 

  24. McCoy CM, Nicholas DQ, Masters KS (2012) Sex-related differences in gene expression by porcine aortic valvular interstitial cells. PloS ONE 7(7):e39980

    CAS  PubMed Central  PubMed  Google Scholar 

  25. Deck JD (1986) Endothelial cell orientation on aortic valve leaflets. Cardiovasc Res 20(10):760–767

    CAS  PubMed  Google Scholar 

  26. Butcher JT, Penrod AM, Garcia AJ, Nerem RM (2004) Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler Thromb Vasc Biol 24(8):1429–1434

    CAS  PubMed  Google Scholar 

  27. Holliday CJ, Ankeny RF, Jo H, Nerem RM (2011) Discovery of shear- and side-specific mRNAs and miRNAs in human aortic valvular endothelial cells. Am J Physiol Heart Circ Physiol 301(3):H856–H867

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Farivar RS, Cohn LH, Soltesz EG, Mihaljevic T, Rawn JD, Byrne JG (2003) Transcriptional profiling and growth kinetics of endothelium reveals differences between cells derived from porcine aorta versus aortic valve. Eur J Cardiothorac Surg 24(4):527–534

    PubMed  Google Scholar 

  29. Butcher JT, Tressel S, Johnson T, Turner D, Sorescu G, Jo H, Nerem RM (2006) Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol 26(1):69–77

    CAS  PubMed  Google Scholar 

  30. Young EW, Wheeler AR, Simmons CA (2007) Matrix-dependent adhesion of vascular and valvular endothelial cells in microfluidic channels. Lab Chip 7(12):1759–1766

    CAS  PubMed  Google Scholar 

  31. Simmons CA, Grant GR, Manduchi E, Davies PF (2005) Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res 96(7):792–799

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Butcher JT, Simmons CA, Warnock JN (2008) Mechanobiology of the aortic heart valve. J Heart Valve Dis 17(1):62–73

    PubMed  Google Scholar 

  33. Lo D, Vesely I (1995) Biaxial strain analysis of the porcine aortic valve. Ann Thorac Surg 60(2 Suppl):S374–S378

    CAS  PubMed  Google Scholar 

  34. Gerdts E, Rossebo AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, Gohlke-Barwolf C, Holme I, Kesaniemi YA, Malbecq W, Nienaber C, Ray S, Skjaerpe T, Wachtell K, Willenheimer R (2010) Impact of baseline severity of aortic valve stenosis on effect of intensive lipid lowering therapy (from the SEAS Study). Am J Cardiol 106(11):1634–1639

    PubMed  Google Scholar 

  35. Yap CH, Saikrishnan N, Yoganathan AP (2012) Experimental measurement of dynamic fluid shear stress on the ventricular surface of the aortic valve leaflet. Biomech Model Mechanobiol 11(1/2):231–244

    PubMed Central  PubMed  Google Scholar 

  36. Balachandran K, Sucosky P, Yoganathan AP (2011) Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflamm 2011:263870

    Google Scholar 

  37. Yap CH, Saikrishnan N, Tamilselvan G, Yoganathan AP (2012) Experimental measurement of dynamic fluid shear stress on the aortic surface of the aortic valve leaflet. Biomech Model Mechanobiol 11(1/2):171–182

    PubMed Central  PubMed  Google Scholar 

  38. Rajamannan NM, Evans FJ, Aikawa E, Grande-Allen KJ, Demer LL, Heistad DD, Simmons CA, Masters KS, Mathieu P, O'Brien KD, Schoen FJ, Towler DA, Yoganathan AP, Otto CM (2011) Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease—2011 update. Circulation 124(16):1783–1791

    PubMed Central  PubMed  Google Scholar 

  39. Otto CM, Lind BK, Kitzman DW, Gersh BJ, Siscovick DS (1999) Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med 341(3):142–147

    CAS  PubMed  Google Scholar 

  40. Stewart BF, Siscovick D, Lind BK, Gardin JM, Gottdiener JS, Smith VE, Kitzman DW, Otto CM (1997) Clinical factors associated with calcific aortic valve disease. Cardiovascular Health Study. J Am Coll Cardiol 29(3):630–634

    CAS  PubMed  Google Scholar 

  41. Barasch E, Gottdiener JS, Marino Larsen EK, Chaves PH, Newman AB (2006) Cardiovascular morbidity and mortality in community-dwelling elderly individuals with calcification of the fibrous skeleton of the base of the heart and aortosclerosis (the cardiovascular health study). Am J Cardiol 97(9):1281–1286

    PubMed  Google Scholar 

  42. Cioffi G, Faggiano P, Vizzardi E, Tarantini L, Cramariuc D, Gerdts E, de Simone G (2011) Prognostic effect of inappropriately high left ventricular mass in asymptomatic severe aortic stenosis. Heart 97(4):301–307

    PubMed  Google Scholar 

  43. Dweck MR, Joshi S, Murigu T, Alpendurada F, Jabbour A, Melina G, Banya W, Gulati A, Roussin I, Raza S, Prasad NA, Wage R, Quarto C, Angeloni E, Refice S, Sheppard M, Cook SA, Kilner PJ, Pennell DJ, Newby DE, Mohiaddin RH, Pepper J, Prasad SK (2011) Midwall fibrosis is an independent predictor of mortality in patients with aortic stenosis. J Am Coll Cardiol 58(12):1271–1279

    PubMed  Google Scholar 

  44. Armstrong ZB, Boughner DR, Carruthers CP, Drangova M, Rogers KA (2014) Effects of an angiotensin II type 1 receptor blocker on aortic valve sclerosis in a pre-clinical model. Can J Cardiol 30(9):1096–1103

    PubMed  Google Scholar 

  45. Rosenhek R, Rader F, Loho N, Gabriel H, Heger M, Klaar U, Schemper M, Binder T, Maurer G, Baumgartner H (2004) Statins but not angiotensin-converting enzyme inhibitors delay progression of aortic stenosis. Circulation 110(10):1291–1295

    CAS  PubMed  Google Scholar 

  46. Shavelle DM, Takasu J, Budoff MJ, Mao S, Zhao XQ, O'Brien KD (2002) HMG CoA reductase inhibitor (statin) and aortic valve calcium. Lancet 359(9312):1125–1126

    CAS  PubMed  Google Scholar 

  47. Rossebo AB, Pedersen TR, Boman K, Brudi P, Chambers JB, Egstrup K, Gerdts E, Gohlke-Barwolf C, Holme I, Kesaniemi YA, Malbecq W, Nienaber CA, Ray S, Skjaerpe T, Wachtell K, Willenheimer R, Investigators S (2008) Intensive lipid lowering with simvastatin and ezetimibe in aortic stenosis. N Engl J Med 359(13):1343–1356

    PubMed  Google Scholar 

  48. Chan KL, Teo K, Dumesnil JG, Ni A, Tam J (2010) Effect of lipid lowering with rosuvastatin on progression of aortic stenosis: results of the aortic stenosis progression observation: measuring effects of rosuvastatin (ASTRONOMER) trial. Circulation 121(2):306–314

    CAS  PubMed  Google Scholar 

  49. Otto CM (2000) Timing of aortic valve surgery. Heart 84(2):211–218

    CAS  PubMed Central  PubMed  Google Scholar 

  50. Zilla P, Brink J, Human P, Bezuidenhout D (2008) Prosthetic heart valves: catering for the few. Biomaterials 29(4):385–406

    CAS  PubMed  Google Scholar 

  51. Mendelson K, Schoen FJ (2006) Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng 34(12):1799–1819

    PubMed Central  PubMed  Google Scholar 

  52. Bonow RO, Carabello BA, Chatterjee K, de Leon AC, Jr., Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O'Gara PT, O’Rourke RA, Otto CM, Shah PM, Shanewise JS, American College of Cardiology/American Heart Association Task Force on Practice Guidelines (2008) 2008 focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation 118 (15):e523–e661

    PubMed  Google Scholar 

  53. O'Brien KD, Reichenbach DD, Marcovina SM, Kuusisto J, Alpers CE, Otto CM (1996) Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of ‘degenerative’ valvular aortic stenosis. Arterioscler Thromb Vasc Biol 16(4):523–532

    PubMed  Google Scholar 

  54. Rabkin-Aikawa E, Farber M, Aikawa M, Schoen FJ (2004) Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis 13(5):841–847

    PubMed  Google Scholar 

  55. Tomasek JJ, Gabbiani G, Hinz B, Chaponnier C, Brown RA (2002) Myofibroblasts and mechano-regulation of connective tissue remodelling. Nat Rev Mol Cell Biol 3(5):349–363

    CAS  PubMed  Google Scholar 

  56. Merryman WD, Youn I, Lukoff HD, Krueger PM, Guilak F, Hopkins RA, Sacks MS (2006) Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am J Physiol Heart Circ Physiol 290(1):H224–H231

    CAS  PubMed  Google Scholar 

  57. Taylor PM, Allen SP, Yacoub MH (2000) Phenotypic and functional characterization of interstitial cells from human heart valves, pericardium and skin. J Heart Valve Dis 9(1):150–158

    CAS  PubMed  Google Scholar 

  58. Rabkin E, Aikawa M, Stone JR, Fukumoto Y, Libby P, Schoen FJ (2001) Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104(21):2525–2532

    CAS  PubMed  Google Scholar 

  59. Bischoff J, Aikawa E (2011) Progenitor cells confer plasticity to cardiac valve endothelium. J Cardiovasc Transl Res 4(6):710–719

    PubMed  Google Scholar 

  60. Mahler GJ, Farrar EJ, Butcher JT (2013) Inflammatory cytokines promote mesenchymal transformation in embryonic and adult valve endothelial cells. Arterioscler Thromb Vasc Biol 33(1):121–130

    CAS  PubMed Central  PubMed  Google Scholar 

  61. Eriksen HA, Satta J, Risteli J, Veijola M, Vare P, Soini Y (2006) Type I and type III collagen synthesis and composition in the valve matrix in aortic valve stenosis. Atherosclerosis 189(1):91–98

    CAS  PubMed  Google Scholar 

  62. Fondard O, Detaint D, Iung B, Choqueux C, Adle-Biassette H, Jarraya M, Hvass U, Couetil JP, Henin D, Michel JB, Vahanian A, Jacob MP (2005) Extracellular matrix remodelling in human aortic valve disease: the role of matrix metalloproteinases and their tissue inhibitors. Eur Heart J 26(13):1333–1341

    CAS  PubMed  Google Scholar 

  63. Satta J, Oiva J, Salo T, Eriksen H, Ohtonen P, Biancari F, Juvonen TS, Soini Y (2003) Evidence for an altered balance between matrix metalloproteinase-9 and its inhibitors in calcific aortic stenosis. Ann Thorac Surg 76(3):681–688. Discussion 688

    PubMed  Google Scholar 

  64. Balachandran K, Sucosky P, Jo H, Yoganathan AP (2009) Elevated cyclic stretch alters matrix remodeling in aortic valve cusps: implications for degenerative aortic valve disease. Am J Physiol Heart Circ Physiol 296(3):H756–H764

    CAS  PubMed  Google Scholar 

  65. Miller JD, Chu Y, Brooks RM, Richenbacher WE, Pena-Silva R, Heistad DD (2008) Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J Am Coll Cardiol 52(10):843–850

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Warren BA, Yong JL (1997) Calcification of the aortic valve: its progression and grading. Pathology 29(4):360–368

    CAS  PubMed  Google Scholar 

  67. Caira FC, Stock SR, Gleason TG, McGee EC, Huang J, Bonow RO, Spelsberg TC, McCarthy PM, Rahimtoola SH, Rajamannan NM (2006) Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol 47(8):1707–1712

    CAS  PubMed Central  PubMed  Google Scholar 

  68. Mohler ER 3rd, Gannon F, Reynolds C, Zimmerman R, Keane MG, Kaplan FS (2001) Bone formation and inflammation in cardiac valves. Circulation 103(11):1522–1528

    PubMed  Google Scholar 

  69. Yip CY, Simmons CA (2011) The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc Pathol 20(3):177–182

    PubMed  Google Scholar 

  70. Chen JH, Simmons CA (2011) Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ Res 108(12):1510–1524

    CAS  PubMed  Google Scholar 

  71. Gould ST, Srigunapalan S, Simmons CA, Anseth KS (2013) Hemodynamic and cellular response feedback in calcific aortic valve disease. Circ Res 113(2):186–197

    CAS  PubMed  Google Scholar 

  72. Everts V, Beertsen W (1996) Phagocytosis and intracellular digestion of collagen, its role in turnover and remodelling. Histochem J 28:229–245

    CAS  PubMed  Google Scholar 

  73. Wynn TA (2007) Common and unique mechanisms regulate fibrosis in various fibroproliferative diseases. J Clin Investig 117(3):524–529

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Hinz B, Phan SH, Thannickal VJ, Prunotto M, Desmouliere A, Varga J, De Wever O, Mareel M, Gabbiani G (2012) Recent developments in myofibroblast biology: paradigms for connective tissue remodeling. Am J Pathol 180(4):1340–1355

    CAS  PubMed Central  PubMed  Google Scholar 

  75. Hinz B, Gabbiani G (2010) Fibrosis: recent advances in myofibroblast biology and new therapeutic perspectives. F1000 Biol Rep 2:78

    PubMed Central  PubMed  Google Scholar 

  76. Hinz B (2010) The myofibroblast: paradigm for a mechanically active cell. J Biomech 43(1):146–155

    PubMed  Google Scholar 

  77. Hinz B (2009) Tissue stiffness, latent TGF-beta1 activation, and mechanical signal transduction: implications for the pathogenesis and treatment of fibrosis. Curr Rheumatol Rep 11(2):120–126

    CAS  PubMed  Google Scholar 

  78. Eastwood M, Mudera VC, McGrouther DA, Brown RA (1998) Effect of precise mechanical loading on fibroblast populated collagen lattices: morphological changes. Cell Motil Cytoskeleton 40(1):13–21

    CAS  PubMed  Google Scholar 

  79. Gabbiani G, Ryan GB, Majne G (1971) Presence of modified fibroblasts in granulation tissue and their possible role in wound contraction. Experientia 27(5):549–550

    CAS  PubMed  Google Scholar 

  80. Desmouliere A, Redard M, Darby I, Gabbiani G (1995) Apoptosis mediates the decrease in cellularity during the transition between granulation tissue and scar. Am J Pathol 146(1):56–66

    CAS  PubMed Central  PubMed  Google Scholar 

  81. Carlson MA, Longaker MT, Thompson JS (2003) Wound splinting regulates granulation tissue survival. J Surg Res 110(1):304–309

    PubMed  Google Scholar 

  82. Hinz B, Pittet P, Smith-Clerc J, Chaponnier C, Meister JJ (2004) Myofibroblast development is characterized by specific cell-cell adherens junctions. Mol Biol Cell 15(9):4310–4320

    CAS  PubMed Central  PubMed  Google Scholar 

  83. Zhang HY, Phan SH (1999) Inhibition of myofibroblast apoptosis by transforming growth factor beta(1). Am J Respir Cell Mol Biol 21(6):658–665

    CAS  PubMed  Google Scholar 

  84. Hinz B (2007) Formation and function of the myofibroblast during tissue repair. J Investig Dermatol 127(3):526–537

    CAS  PubMed  Google Scholar 

  85. Petridou S, Maltseva O, Spanakis S, Masur SK (2000) TGF-beta receptor expression and Smad2 localization are cell density dependent in fibroblasts. Investig Ophthalmol Vis Sci 41(1):89–95

    CAS  Google Scholar 

  86. Balestrini JL, Chaudhry S, Sarrazy V, Koehler A, Hinz B (2012) The mechanical memory of lung myofibroblasts. Integr Biol (Camb) 4(4):410–421

    CAS  Google Scholar 

  87. Kisseleva T, Cong M, Paik Y, Scholten D, Jiang C, Benner C, Iwaisako K, Moore-Morris T, Scott B, Tsukamoto H, Evans SM, Dillmann W, Glass CK, Brenner DA (2012) Myofibroblasts revert to an inactive phenotype during regression of liver fibrosis. Proc Natl Acad Sci U S A 109(24):9448–9453

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Jun JB, Kuechle M, Min J, Shim SC, Kim G, Montenegro V, Korn JH, Elkon KB (2005) Scleroderma fibroblasts demonstrate enhanced activation of Akt (protein kinase B) in situ. J Investig Dermatol 124(2):298–303

    CAS  PubMed  Google Scholar 

  89. Mimura Y, Ihn H, Jinnin M, Asano Y, Yamane K, Tamaki K (2005) Constitutive phosphorylation of focal adhesion kinase is involved in the myofibroblast differentiation of scleroderma fibroblasts. J Investig Dermatol 124(5):886–892

    CAS  PubMed  Google Scholar 

  90. Chan MW, Arora PD, Bozavikov P, McCulloch CA (2009) FAK, PIP5KIgamma and gelsolin cooperatively mediate force-induced expression of alpha-smooth muscle actin. J Cell Sci 122(15):2769–2781

    CAS  PubMed  Google Scholar 

  91. Hinz B, Phan SH, Thannickal VJ, Galli A, Bochaton-Piallat ML, Gabbiani G (2007) The myofibroblast: one function, multiple origins. Am J Pathol 170(6):1807–1816

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Bond JE, Ho TQ, Selim MA, Hunter CL, Bowers EV, Levinson H (2011) Temporal spatial expression and function of non-muscle myosin II isoforms IIA and IIB in scar remodeling. Lab Invest 91(4):499–508

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Hinz B, Mastrangelo D, Iselin CE, Chaponnier C, Gabbiani G (2001) Mechanical tension controls granulation tissue contractile activity and myofibroblast differentiation. Am J Pathol 159(3):1009–1020

    CAS  PubMed Central  PubMed  Google Scholar 

  94. Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L, Gabbiani G (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142(3):873–881

    CAS  PubMed Central  PubMed  Google Scholar 

  95. Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2(11):793–805

    CAS  PubMed  Google Scholar 

  96. Dugina V, Fontao L, Chaponnier C, Vasiliev J, Gabbiani G (2001) Focal adhesion features during myofibroblastic differentiation are controlled by intracellular and extracellular factors. J Cell Sci 114(18):3285–3296

    CAS  PubMed  Google Scholar 

  97. Wipff PJ, Rifkin DB, Meister JJ, Hinz B (2007) Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix. J Cell Biol 179(6):1311–1323

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Kohan M, Muro AF, White ES, Berkman N (2010) EDA-containing cellular fibronectin induces fibroblast differentiation through binding to alpha4beta7 integrin receptor and MAPK/Erk 1/2-dependent signaling. FASEB J 24(11):4503–4512

    CAS  PubMed  Google Scholar 

  99. Goffin JM, Pittet P, Csucs G, Lussi JW, Meister JJ, Hinz B (2006) Focal adhesion size controls tension-dependent recruitment of alpha-smooth muscle actin to stress fibers. J Cell Biol 172(2):259–268

    CAS  PubMed Central  PubMed  Google Scholar 

  100. Hinz B, Dugina V, Ballestrem C, Wehrle-Haller B, Chaponnier C (2003) Alpha-smooth muscle actin is crucial for focal adhesion maturation in myofibroblasts. Mol Biol Cell 14(6):2508–2519

    CAS  PubMed Central  PubMed  Google Scholar 

  101. Gabbiani G, Chaponnier C, Huttner I (1978) Cytoplasmic filaments and gap junctions in epithelial cells and myofibroblasts during wound healing. J Cell Biol 76(3):561–568

    CAS  PubMed  Google Scholar 

  102. Spanakis SG, Petridou S, Masur SK (1998) Functional gap junctions in corneal fibroblasts and myofibroblasts. Investig Ophthalmol Vis Sci 39(8):1320–1328

    CAS  Google Scholar 

  103. Katsumi A, Orr AW, Tzima E, Schwartz MA (2004) Integrins in mechanotransduction. J Biol Chem 279(13):12001–12004

    CAS  PubMed  Google Scholar 

  104. Schurch W, Seemayer TA, Hinz B, Gabbiani G (2007) Myofibroblast. In: Mills SE (ed) Histology for pathologists, 3rd edn. Lippincott-Williams & Wilkins, Philadelphia, pp 123–164

    Google Scholar 

  105. Gabbiani G (1992) The biology of the myofibroblast. Kidney Int 41(3):530–532

    CAS  PubMed  Google Scholar 

  106. Aikawa M, Sivam PN, Kuro-o M, Kimura K, Nakahara K, Takewaki S, Ueda M, Yamaguchi H, Yazaki Y, Periasamy M et al (1993) Human smooth muscle myosin heavy chain isoforms as molecular markers for vascular development and atherosclerosis. Circ Res 73(6):1000–1012

    CAS  PubMed  Google Scholar 

  107. van der Loop FT, Schaart G, Timmer ED, Ramaekers FC, van Eys GJ (1996) Smoothelin, a novel cytoskeletal protein specific for smooth muscle cells. J Cell Biol 134(2):401–411

    PubMed  Google Scholar 

  108. Eyden B (2008) The myofibroblast: phenotypic characterization as a prerequisite to understanding its functions in translational medicine. J Cell Mol Med 12(1):22–37

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Massague J (2012) TGF-beta signalling in context. Nat Rev Mol Cell Biol 13(10):616–630

    CAS  PubMed Central  PubMed  Google Scholar 

  110. Schnabl B, Kweon YO, Frederick JP, Wang XF, Rippe RA, Brenner DA (2001) The role of Smad3 in mediating mouse hepatic stellate cell activation. Hepatology 34(1):89–100

    CAS  PubMed  Google Scholar 

  111. Heldin CH, Miyazono K, ten Dijke P (1997) TGF-beta signalling from cell membrane to nucleus through Smad proteins. Nature 390(6659):465–471

    CAS  PubMed  Google Scholar 

  112. Annes JP, Chen Y, Munger JS, Rifkin DB (2004) Integrin alphaVbeta6-mediated activation of latent TGF-beta requires the latent TGF-beta binding protein-1. J Cell Biol 165(5):723–734

    CAS  PubMed Central  PubMed  Google Scholar 

  113. Keski-Oja J, Koli K, von Melchner H (2004) TGF-beta activation by traction? Trends Cell Biol 14(12):657–659

    CAS  PubMed  Google Scholar 

  114. Jenkins G (2008) The role of proteases in transforming growth factor-beta activation. Int J Biochem Cell Biol 40(6/7):1068–1078

    CAS  PubMed  Google Scholar 

  115. Sheppard D (2005) Integrin-mediated activation of latent transforming growth factor beta. Cancer Metastasis Rev 24(3):395–402

    CAS  PubMed  Google Scholar 

  116. Jian B, Narula N, Li QY, Mohler ER 3rd, Levy RJ (2003) Progression of aortic valve stenosis: TGF-beta1 is present in calcified aortic valve cusps and promotes aortic valve interstitial cell calcification via apoptosis. Ann Thorac Surg 75(2):457–465. Discussion 465-456

    PubMed  Google Scholar 

  117. Walker GA, Masters KS, Shah DN, Anseth KS, Leinwand LA (2004) Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res 95(3):253–260

    CAS  PubMed  Google Scholar 

  118. Cushing MC, Mariner PD, Liao JT, Sims EA, Anseth KS (2008) Fibroblast growth factor represses Smad-mediated myofibroblast activation in aortic valvular interstitial cells. FASEB J 22(6):1769–1777

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Liu AC, Gotlieb AI (2008) Transforming growth factor-beta regulates in vitro heart valve repair by activated valve interstitial cells. Am J Pathol 173(5):1275–1285

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Merryman WD, Lukoff HD, Long RA, Engelmayr GC Jr, Hopkins RA, Sacks MS (2007) Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc Pathol 16(5):268–276

    CAS  PubMed Central  PubMed  Google Scholar 

  121. Merryman WD (2008) Insights into (the interstitium of) degenerative aortic valve disease. J Am Coll Cardiol 51(14):1415 (author reply 1416)

    PubMed  Google Scholar 

  122. Cushing MC, Liao JT, Anseth KS (2005) Activation of valvular interstitial cells is mediated by transforming growth factor-beta1 interactions with matrix molecules. Matrix Biol 24(6):428–437

    CAS  PubMed  Google Scholar 

  123. Yip CY, Chen JH, Zhao R, Simmons CA (2009) Calcification by valve interstitial cells is regulated by the stiffness of the extracellular matrix. Arterioscler Thromb Vasc Biol 29(6):936–942

    CAS  PubMed  Google Scholar 

  124. Chen JH, Chen WL, Sider KL, Yip CY, Simmons CA (2011) Beta-catenin mediates mechanically regulated, transforming growth factor-beta1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol 31(3):590–597

    CAS  PubMed  Google Scholar 

  125. Murakami S, Nagaya N, Itoh T, Fujii T, Iwase T, Hamada K, Kimura H, Kangawa K (2004) C-type natriuretic peptide attenuates bleomycin-induced pulmonary fibrosis in mice. Am J Physiol Lung Cell Mol Physiol 287(6):L1172–L1177

    CAS  PubMed  Google Scholar 

  126. Izumiya Y, Araki S, Usuku H, Rokutanda T, Hanatani S, Ogawa H (2012) Chronic C-type natriuretic peptide infusion attenuates angiotensin ii-induced myocardial superoxide production and cardiac remodeling. Int J Vasc Med 2012:246058

    PubMed Central  PubMed  Google Scholar 

  127. Kuhnl A, Pelisek J, Tian W, Kuhlmann M, Rolland PH, Mekkaoui C, Fuchs A, Nikol S (2005) C-type natriuretic peptide inhibits constrictive remodeling without compromising re-endothelialization in balloon-dilated renal arteries. J Endovasc Ther 12(2):171–182

    PubMed  Google Scholar 

  128. Peltonen TO, Taskinen P, Soini Y, Rysa J, Ronkainen J, Ohtonen P, Satta J, Juvonen T, Ruskoaho H, Leskinen H (2007) Distinct downregulation of C-type natriuretic peptide system in human aortic valve stenosis. Circulation 116(11):1283–1289

    CAS  PubMed  Google Scholar 

  129. Yip CY, Blaser MC, Mirzaei Z, Zhong X, Simmons CA (2011) Inhibition of pathological differentiation of valvular interstitial cells by C-type natriuretic peptide. Arterioscler Thromb Vasc Biol 31(8):1881–1889

    CAS  PubMed  Google Scholar 

  130. Wyss K, Yip CY, Mirzaei Z, Jin X, Chen JH, Simmons CA (2012) The elastic properties of valve interstitial cells undergoing pathological differentiation. J Biomech 45(5):882–887

    PubMed  Google Scholar 

  131. Li P, Wang D, Lucas J, Oparil S, Xing D, Cao X, Novak L, Renfrow MB, Chen YF (2008) Atrial natriuretic peptide inhibits transforming growth factor beta-induced Smad signaling and myofibroblast transformation in mouse cardiac fibroblasts. Circ Res 102(2):185–192

    CAS  PubMed  Google Scholar 

  132. Balachandran K, Alford PW, Wylie-Sears J, Goss JA, Grosberg A, Bischoff J, Aikawa E, Levine RA, Kit Parker K (2011) Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proc Natl Acad Sci U S A 108(50):19943–19948

    CAS  PubMed Central  PubMed  Google Scholar 

  133. Leight JL, Wozniak MA, Chen S, Lynch ML, Chen CS (2012) Matrix rigidity regulates a switch between TGF-beta1-induced apoptosis and epithelial-mesenchymal transition. Mol Biol Cell 23(5):781–791

    CAS  PubMed Central  PubMed  Google Scholar 

  134. Paranya G, Vineberg S, Dvorin E, Kaushal S, Roth SJ, Rabkin E, Schoen FJ, Bischoff J (2001) Aortic valve endothelial cells undergo transforming growth factor-beta-mediated and non-transforming growth factor-beta-mediated transdifferentiation in vitro. Am J Pathol 159(4):1335–1343

    CAS  PubMed Central  PubMed  Google Scholar 

  135. Yang JH, Wylie-Sears J, Bischoff J (2008) Opposing actions of Notch1 and VEGF in post-natal cardiac valve endothelial cells. Biochem Biophys Res Commun 374(3):512–516

    CAS  PubMed Central  PubMed  Google Scholar 

  136. Farrar EJ, Butcher JT (2014) Heterogeneous susceptibility of valve endothelial cells to mesenchymal transformation in response to tnf alpha. Ann Biomed Eng 42(1):149–161

    PubMed Central  PubMed  Google Scholar 

  137. Johnson CP, Tang HY, Carag C, Speicher DW, Discher DE (2007) Forced unfolding of proteins within cells. Science 317(5838):663–666

    CAS  PubMed Central  PubMed  Google Scholar 

  138. Lessey EC, Guilluy C, Burridge K (2012) From mechanical force to RhoA activation. BioChemistry 51(38):7420–7432

    CAS  PubMed Central  PubMed  Google Scholar 

  139. Katoh K, Kano Y, Amano M, Onishi H, Kaibuchi K, Fujiwara K (2001) Rho-kinase-mediated contraction of isolated stress fibers. J Cell Biol 153(3):569–584

    CAS  PubMed Central  PubMed  Google Scholar 

  140. Zhao XH, Laschinger C, Arora P, Szaszi K, Kapus A, McCulloch CA (2007) Force activates smooth muscle alpha-actin promoter activity through the Rho signaling pathway. J Cell Sci 120(10):1801–1809

    CAS  PubMed  Google Scholar 

  141. Bamburg JR, McGough A, Ono S (1999) Putting a new twist on actin: ADF/cofilins modulate actin dynamics. Trends Cell Biol 9(9):364–370

    CAS  PubMed  Google Scholar 

  142. Miralles F, Posern G, Zaromytidou AI, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113(3):329–342

    CAS  PubMed  Google Scholar 

  143. Wang J, Su M, Fan J, Seth A, McCulloch CA (2002) Transcriptional regulation of a contractile gene by mechanical forces applied through integrins in osteoblasts. The J Biol Chem 277(25):22889–22895

    CAS  PubMed  Google Scholar 

  144. Chan MW, Chaudary F, Lee W, Copeland JW, McCulloch CA (2010) Force-induced myofibroblast differentiation through collagen receptors is dependent on mammalian diaphanous (mDia). J Biol Chem 285(12):9273–9281

    CAS  PubMed Central  PubMed  Google Scholar 

  145. Gu X, Masters KS (2011) Role of the Rho pathway in regulating valvular interstitial cell phenotype and nodule formation. Am J Physiol Heart Circ Physiol 300(2):H448–H458

    CAS  PubMed Central  PubMed  Google Scholar 

  146. Witt W, Jannasch A, Burkhard D, Christ T, Ravens U, Brunssen C, Leuner A, Morawietz H, Matschke K, Waldow T (2012) Sphingosine-1-phosphate induces contraction of valvular interstitial cells from porcine aortic valves. Cardiovasc Res 93(3):490–497

    CAS  PubMed  Google Scholar 

  147. Cote N, Husseini D E, Pepin A, Guauque-Olarte S, Ducharme V, Bouchard-Cannon P, Audet A, Fournier D, Gaudreault N, Derbali H, McKee MD, Simard C, Despres JP, Pibarot P, Bosse Y, Mathieu P (2012) ATP acts as a survival signal and prevents the mineralization of aortic valve. J Mol Cell Cardiol 52(5):1191–1202

    CAS  PubMed  Google Scholar 

  148. Bouchareb R, Boulanger MC, Fournier D, Pibarot P, Messaddeq Y, Mathieu P (2013) Mechanical strain induces the production of spheroid mineralized micro particles in the aortic valve through a RhoA/ROCK-dependent mechanism. J Mol Cell Cardiol 67:49–59

    PubMed  Google Scholar 

  149. Monzack EL, Gu X, Masters KS (2009) Efficacy of simvastatin treatment of valvular interstitial cells varies with the extracellular environment. Arterioscler Thromb Vasc Biol 29(2):246–253

    CAS  PubMed Central  PubMed  Google Scholar 

  150. Witt W, Buttner P, Jannasch A, Matschke K, Waldow T (2014) Reversal of myofibroblastic activation by polyunsaturated fatty acids in valvular interstitial cells from aortic valves. Role of RhoA/G-actin/MRTF signalling. J Mol Cell Cardiol 74:127–138

    CAS  PubMed  Google Scholar 

  151. Polyakova V, Hein S, Kostin S, Ziegelhoeffer T, Schaper J (2004) Matrix metalloproteinases and their tissue inhibitors in pressure-overloaded human myocardium during heart failure progression. J Am Coll Cardiol 44(8):1609–1618

    CAS  PubMed  Google Scholar 

  152. Balachandran K, Konduri S, Sucosky P, Jo H, Yoganathan AP (2006) An ex vivo study of the biological properties of porcine aortic valves in response to circumferential cyclic stretch. Ann Biomed Eng 34(11):1655–1665

    PubMed Central  PubMed  Google Scholar 

  153. Balachandran K, Sucosky P, Jo H, Yoganathan AP (2010) Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am J Pathol 177(1):49–57

    CAS  PubMed Central  PubMed  Google Scholar 

  154. Yang X, Meng X, Su X, Mauchley DC, Ao L, Cleveland JC Jr, Fullerton DA (2009) Bone morphogenic protein 2 induces Runx2 and osteopontin expression in human aortic valve interstitial cells: role of Smad1 and extracellular signal-regulated kinase 1/2. J Thorac Cardiovasc Surg 138(4):1008–1015

    CAS  PubMed  Google Scholar 

  155. Balachandran K, Hussain S, Yap CH, Padala M, Chester AH, Yoganathan AP (2012) Elevated cyclic stretch and serotonin result in altered aortic valve remodeling via a mechanosensitive 5-HT(2A) receptor-dependent pathway. Cardiovasc Pathol 21(3):206–213

    CAS  PubMed  Google Scholar 

  156. Balachandran K, Bakay MA, Connolly JM, Zhang X, Yoganathan AP, Levy RJ (2011) Aortic valve cyclic stretch causes increased remodeling activity and enhanced serotonin receptor responsiveness. Ann Thorac Surg 92(1):147–153

    PubMed Central  PubMed  Google Scholar 

  157. Guilluy C, Rolli-Derkinderen M, Tharaux PL, Melino G, Pacaud P, Loirand G (2007) Transglutaminase-dependent RhoA activation and depletion by serotonin in vascular smooth muscle cells. J Biol Chem 282(5):2918–2928

    CAS  PubMed  Google Scholar 

  158. Jian B, Xu J, Connolly J, Savani RC, Narula N, Liang B, Levy RJ (2002) Serotonin mechanisms in heart valve disease I: serotonin-induced up-regulation of transforming growth factor-beta1 via G-protein signal transduction in aortic valve interstitial cells. Am J Pathol 161(6):2111–2121

    CAS  PubMed Central  PubMed  Google Scholar 

  159. Wigle ED (1957) Myocardial fibrosis and calcareous emboli in valvular heart disease. Br Heart J 19(4):539–549

    CAS  PubMed Central  PubMed  Google Scholar 

  160. Maron BJ, Ferrans VJ, Roberts WC (1975) Myocardial ultrastructure in patients with chronic aortic valve disease. Am J Cardiol 35(5):725–739

    CAS  PubMed  Google Scholar 

  161. Villari B, Campbell SE, Hess OM, Mall G, Vassalli G, Weber KT, Krayenbuehl HP (1993) Influence of collagen network on left ventricular systolic and diastolic function in aortic valve disease. J Am Coll Cardiol 22(5):1477–1484

    CAS  PubMed  Google Scholar 

  162. Krayenbuehl HP, Hess OM, Monrad ES, Schneider J, Mall G, Turina M (1989) Left ventricular myocardial structure in aortic valve disease before, intermediate, and late after aortic valve replacement. Circulation 79(4):744–755

    CAS  PubMed  Google Scholar 

  163. Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Investig 56(1):56–64

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Carabello BA (1995) The relationship of left ventricular geometry and hypertrophy to left ventricular function in valvular heart disease. J Heart Valve Dis 4(Suppl 2):S132–S138. Discussion S138–139

    PubMed  Google Scholar 

  165. Hein S, Arnon E, Kostin S, Schonburg M, Elsasser A, Polyakova V, Bauer EP, Klovekorn WP, Schaper J (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107(7):984–991

    PubMed  Google Scholar 

  166. Flett AS, Hayward MP, Ashworth MT, Hansen MS, Taylor AM, Elliott PM, McGregor C, Moon JC (2010) Equilibrium contrast cardiovascular magnetic resonance for the measurement of diffuse myocardial fibrosis: preliminary validation in humans. Circulation 122(2):138–144

    PubMed  Google Scholar 

  167. Bing OH, Ngo HQ, Humphries DE, Robinson KG, Lucey EC, Carver W, Brooks WW, Conrad CH, Hayes JA, Goldstein RH (1997) Localization of alpha1(I) collagen mRNA in myocardium from the spontaneously hypertensive rat during the transition from compensated hypertrophy to failure. J Mol Cell Cardiol 29(9):2335–2344

    CAS  PubMed  Google Scholar 

  168. Creemers EE, Pinto YM (2011) Molecular mechanisms that control interstitial fibrosis in the pressure-overloaded heart. Cardiovasc Res 89(2):265–272

    CAS  PubMed  Google Scholar 

  169. Willems IE, Havenith MG, De Mey JG, Daemen MJ (1994) The alpha-smooth muscle actin-positive cells in healing human myocardial scars. Am J Pathol 145(4):868–875

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Carver W, Nagpal ML, Nachtigal M, Borg TK, Terracio L (1991) Collagen expression in mechanically stimulated cardiac fibroblasts. Circ Res 69(1):116–122

    CAS  PubMed  Google Scholar 

  171. Butt RP, Bishop JE (1997) Mechanical load enhances the stimulatory effect of serum growth factors on cardiac fibroblast procollagen synthesis. J Mol Cell Cardiol 29(4):1141–1151

    CAS  PubMed  Google Scholar 

  172. Xie J, Zhang Q, Zhu T, Zhang Y, Liu B, Xu J, Zhao H (2014) Substrate stiffness-regulated matrix metalloproteinase output in myocardial cells and cardiac fibroblasts: Implications for myocardial fibrosis. Acta Biomater 10(6):2463–2472

    CAS  PubMed  Google Scholar 

  173. Kharaziha M, Nikkhah M, Shin SR, Annabi N, Masoumi N, Gaharwar AK, Camci-Unal G, Khademhosseini A (2013) PGS:Gelatin nanofibrous scaffolds with tunable mechanical and structural properties for engineering cardiac tissues. Biomaterials 34(27):6355–6366

    CAS  PubMed Central  PubMed  Google Scholar 

  174. MacKenna D, Summerour SR, Villarreal FJ (2000) Role of mechanical factors in modulating cardiac fibroblast function and extracellular matrix synthesis. Cardiovasc Res 46(2):257–263

    CAS  PubMed  Google Scholar 

  175. Rosenkranz S, Flesch M, Amann K, Haeuseler C, Kilter H, Seeland U, Schluter KD, Bohm M (2002) Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta(1). Am J Physiol Heart Circ Physiol 283(3):H1253–H1262

    CAS  PubMed  Google Scholar 

  176. Brooks WW, Conrad CH (2000) Myocardial fibrosis in transforming growth factor beta(1)heterozygous mice. J Mol Cell Cardiol 32(2):187–195

    CAS  PubMed  Google Scholar 

  177. Kuwahara F, Kai H, Tokuda K, Kai M, Takeshita A, Egashira K, Imaizumi T (2002) Transforming growth factor-beta function blocking prevents myocardial fibrosis and diastolic dysfunction in pressure-overloaded rats. Circulation 106(1):130–135

    CAS  PubMed  Google Scholar 

  178. Sarrazy V, Koehler A, Chow M, Zimina E, Li CX, Kato H, Caldarone CA, Hinz B (2014) Integrins alphavbeta5 and alphavbeta3 promote latent TGF-beta1 activation by human cardiac fibroblast contraction. Cardiovasc Res 102(3):407–417

    CAS  PubMed Central  PubMed  Google Scholar 

  179. de Boer RA, Pokharel S, Flesch M, van Kampen DA, Suurmeijer AJ, Boomsma F, van Gilst WH, van Veldhuisen DJ, Pinto YM (2004) Extracellular signal regulated kinase and Smad signaling both mediate the angiotensin II driven progression towards overt heart failure in homozygous TGR(mRen2)27. J Mol Med 82(10):678–687

    CAS  PubMed  Google Scholar 

  180. Small EM, Thatcher JE, Sutherland LB, Kinoshita H, Gerard RD, Richardson JA, Dimaio JM, Sadek H, Kuwahara K, Olson EN (2010) Myocardin-related transcription factor-a controls myofibroblast activation and fibrosis in response to myocardial infarction. Circ Res 107(2):294–304

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Tkatchenko TV, Moreno-Rodriguez RA, Conway SJ, Molkentin JD, Markwald RR, Tkatchenko AV (2009) Lack of periostin leads to suppression of Notch1 signaling and calcific aortic valve disease. Physiol Genomics 39(3):160–168

    CAS  PubMed Central  PubMed  Google Scholar 

  182. Nus M, Macgrogan D, Martinez-Poveda B, Benito Y, Casanova JC, Fernandez-Aviles F, Bermejo J, de la Pompa JL (2011) Diet-induced aortic valve disease in mice haploinsufficient for the Notch pathway effector RBPJK/CSL. Arterioscler Thromb Vasc Biol 31(7):1580–1588

    CAS  PubMed  Google Scholar 

  183. Laforest B, Andelfinger G, Nemer M (2011) Loss of Gata5 in mice leads to bicuspid aortic valve. J Clin Investig 121(7):2876–2887

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Wilson CL, Gough PJ, Chang CA, Chan CK, Frey JM, Liu Y, Braun KR, Chin MT, Wight TN, Raines EW (2013) Endothelial deletion of ADAM17 in mice results in defective remodeling of the semilunar valves and cardiac dysfunction in adults. Mech Dev 130(4/5):272–289

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Kokubo H, Miyagawa-Tomita S, Nakashima Y, Kume T, Yoshizumi M, Nakanishi T, Saga Y (2013) Hesr2 knockout mice develop aortic valve disease with advancing age. Arterioscler Thromb Vasc Biol 33(3):e84–e92

    CAS  PubMed  Google Scholar 

  186. Carroll JD, Carroll EP, Feldman T, Ward DM, Lang RM, McGaughey D, Karp RB (1992) Sex-associated differences in left ventricular function in aortic stenosis of the elderly. Circulation 86(4):1099–1107

    CAS  PubMed  Google Scholar 

  187. Petrov G, Regitz-Zagrosek V, Lehmkuhl E, Krabatsch T, Dunkel A, Dandel M, Dworatzek E, Mahmoodzadeh S, Schubert C, Becher E, Hampl H, Hetzer R (2010) Regression of myocardial hypertrophy after aortic valve replacement: faster in women? Circulation 122(11 Suppl):S23–S28

    PubMed  Google Scholar 

  188. Sider KL, Blaser MC, Simmons CA (2011) Animal models of calcific aortic valve disease. Int J Inflamm 2011:364310

    Google Scholar 

  189. Nadkarni SK, Bouma BE, Helg T, Chan R, Halpern E, Chau A, Minsky MS, Motz JT, Houser SL, Tearney GJ (2005) Characterization of atherosclerotic plaques by laser speckle imaging. Circulation 112(6):885–892

    PubMed Central  PubMed  Google Scholar 

  190. Liu H, Sun Y, Simmons CA (2013) Determination of local and global elastic moduli of valve interstitial cells cultured on soft substrates. J Biomech 46(11):1967–1971

    PubMed  Google Scholar 

  191. Bonow RO, Carabello BA, Chatterjee K, de Leon AC Jr, Faxon DP, Freed MD, Gaasch WH, Lytle BW, Nishimura RA, O’Gara PT, O’Rourke RA, Otto CM, Shah PM, Shanewise JS (2008) 2008 Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 guidelines for the management of patients with valvular heart disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation 118(15):e523–e661

    PubMed  Google Scholar 

  192. Freeman RV, Otto CM (2005) Spectrum of calcific aortic valve disease: pathogenesis, disease progression, and treatment strategies. Circulation 111(24):3316–3326

    PubMed  Google Scholar 

  193. Elmariah S, Mohler ER 3rd (2010) The Pathogenesis and treatment of the valvulopathy of aortic stenosis: beyond the SEAS. Curr Cardiol Rep 12(2):125–132

    PubMed Central  PubMed  Google Scholar 

  194. Miller JD, Weiss RM, Serrano KM, Brooks RM 2nd, Berry CJ, Zimmerman K, Young SG, Heistad DD (2009) Lowering plasma cholesterol levels halts progression of aortic valve disease in mice. Circulation 119(20):2693–2701

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Miller JD, Weiss RM, Serrano KM, Castaneda LE, Brooks RM, Zimmerman K, Heistad DD (2010) Evidence for active regulation of pro-osteogenic signaling in advanced aortic valve disease. Arterioscler Thromb Vasc Biol 30(12):2482–2486

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Antonini-Canterin F, Hirsu M, Popescu BA, Leiballi E, Piazza R, Pavan D, Ginghina C, Nicolosi GL (2008) Stage-related effect of statin treatment on the progression of aortic valve sclerosis and stenosis. Am J Cardiol 102(6):738–742

    CAS  PubMed  Google Scholar 

  197. Aikawa E, Nahrendorf M, Sosnovik D, Lok VM, Jaffer FA, Aikawa M, Weissleder R (2007) Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation 115(3):377–386

    CAS  PubMed  Google Scholar 

  198. Butcher JT, Mahler GJ, Hockaday LA (2011) Aortic valve disease and treatment: The need for naturally engineered solutions. Adv Drug Deliv Rev 63(4/5):242–268

    CAS  PubMed  Google Scholar 

  199. Agarwal A, Goss JA, Cho A, McCain ML, Parker KK (2013) Microfluidic heart on a chip for higher throughput pharmacological studies. Lab Chip 13(18):3599–3608

    CAS  PubMed Central  PubMed  Google Scholar 

  200. Srigunapalan S, Lam C, Wheeler AR, Simmons CA (2011) A microfluidic membrane device to mimic critical components of the vascular microenvironment. Biomicrofluidics 5(1):13409

    PubMed  Google Scholar 

  201. Moraes C, Chen JH, Sun Y, Simmons CA (2010) Microfabricated arrays for high-throughput screening of cellular response to cyclic substrate deformation. Lab Chip 10(2):227–234

    CAS  PubMed  Google Scholar 

  202. Esch MB, Smith AS, Prot JM, Oleaga C, Hickman JJ, Shuler ML (2014) How multi-organ microdevices can help foster drug development. Adv Drug Deliv Rev 69–70:158–169

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Canadian Institutes of Health Research, the National Science and Engineering Research Council of Canada, and the Heart and Stroke Foundation of Ontario. We gratefully acknowledge Dr. Krista Sider for providing images of porcine aortic valves .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Simmons .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Blaser, M., Simmons, C. (2015). Mechanical and Matrix Regulation of Valvular Fibrosis. In: Dixon, I., Wigle, J. (eds) Cardiac Fibrosis and Heart Failure: Cause or Effect?. Advances in Biochemistry in Health and Disease, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-17437-2_3

Download citation

Publish with us

Policies and ethics