Skip to main content

Extracellular Matrix and Cardiac Disease: Surgical and Scientific Perspectives

  • Chapter
  • First Online:
Cardiac Fibrosis and Heart Failure: Cause or Effect?

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 13))

  • 1291 Accesses

Abstract

Scientists and surgeons can each benefit from a clear understanding of cardiac ECM and its’ influence on cardiac structure and function in both health and disease. This chapter highlights key concepts with respect to the influence of cardiac ECM in traditional surgical repairs and introduces emerging “biosurgical” strategies designed to leverage ECM biology and further enhance innovative surgical repairs to optimize cardiac performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fedak PWM, Bai L, Turnbull J et al (2012) Cell therapy limits myofibroblast differentiation and structural cardiac remodeling: basic fibroblast growth factor-mediated paracrine mechanism. Circ Heart Fail 5:349–356

    Article  CAS  PubMed  Google Scholar 

  2. Badenhorst D, Maseko M, Tsotetsi OJ et al (2003) Cross-linking influences the impact of quantitative changes in myocardial collagen on cardiac stiffness and remodelling in hypertension in rats. Cardiovasc Res 57:632–641

    Article  CAS  PubMed  Google Scholar 

  3. Mann DL, Spinale FG (1998) Activation of matrix metalloproteinases in the failing human heart: breaking the tie that binds. Circulation 98:1699–1702

    Article  CAS  PubMed  Google Scholar 

  4. Fedak PWM, Verma S, Weisel RD, Li R-K (2005) Cardiac remodeling and failure From molecules to man (Part II). Cardiovasc Pathol 14:49–60

    Article  CAS  PubMed  Google Scholar 

  5. Baicu CF, Stroud JD, Livesay VA et al (2003) Changes in extracellular collagen matrix alter myocardial systolic performance. Am J Physiol Heart Circ Physiol 284:H122–H132

    Article  CAS  PubMed  Google Scholar 

  6. Janicki JS, Brower GL (2002) The role of myocardial fibrillar collagen in ventricular remodeling and function. J Card Fail 8:S319–S325

    Article  CAS  PubMed  Google Scholar 

  7. Ross RS, Borg TK (2001) Integrins and the myocardium Circ Res 88:1112–1119

    Google Scholar 

  8. Koh GY, Soonpaa MH, Klug MG et al (1995) Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. J Clin Invest 96:2034–2042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Roell W, Lu ZJ, Bloch W et al (2002) Cellular cardiomyoplasty improves survival after myocardial injury. Circulation 105:2435–2441

    Article  PubMed  Google Scholar 

  10. Lukashev ME, Werb Z (1998) ECM signalling: orchestrating cell behaviour and misbehaviour. Trends Cell Biol 8:437–441

    Article  CAS  PubMed  Google Scholar 

  11. Lundgren E, Terracio L, Mårdh S, Borg TK (1985) Extracellular matrix components influence the survival of adult cardiac myocytes in vitro. Exp Cell Res 158:371–381

    Article  CAS  PubMed  Google Scholar 

  12. Carver W, Terracio L, Borg TK (1993) Expression and accumulation of interstitial collagen in the neonatal rat heart. Anat Rec 236:511–520

    Article  CAS  PubMed  Google Scholar 

  13. Ding B, Price RL, Goldsmith EC et al (2000) Left ventricular hypertrophy in ascending aortic stenosis mice: anoikis and the progression to early failure. Circulation 101:2854–2862

    Article  CAS  PubMed  Google Scholar 

  14. Nahrendorf M, Swirski FK, Aikawa E et al (2007) The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med 204:3037–3047

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Weber KT, Pick R, Janicki JS et al (1988) Inadequate collagen tethers in dilated cardiopathy. Am Heart J 116:1641–1646

    Article  CAS  PubMed  Google Scholar 

  16. Fedak PWM, Altamentova SM, Weisel RD et al (2003) Matrix remodeling in experimental and human heart failure: a possible regulatory role for TIMP-3. Am J Physiol Heart Circ Physiol 284:H626–H634

    Article  CAS  PubMed  Google Scholar 

  17. Spinale FG (2002) Matrix metalloproteinases: regulation and dysregulation in the failing heart. Circ Res 90:520–530

    Article  CAS  PubMed  Google Scholar 

  18. Weber KT, Jalil JE, Janicki JS, Pick R (1989) Myocardial collagen remodeling in pressure overload hypertrophy. A case for interstitial heart disease. Am J Hypertens 2:931–940

    Article  CAS  PubMed  Google Scholar 

  19. Fedak PWM (2006) Altered expression of disintegrin metalloproteinases and their inhibitor in human dilated cardiomyopathy. Circulation 113:238–245

    Article  CAS  PubMed  Google Scholar 

  20. Weber KT, Brilla CG, Janicki JS (1993) Myocardial fibrosis: functional significance and regulatory factors. Cardiovasc Res 27:341–348

    Article  CAS  PubMed  Google Scholar 

  21. Fedak PWM, Szmitko PE, Weisel RD et al (2005) Cell transplantation preserves matrix homeostasis: a novel paracrine mechanism. J Thorac Cardiovasc Surg 130:1430–1439

    Article  PubMed  Google Scholar 

  22. Dietz HC, Loeys B, Carta L, Ramirez F (2005) Recent progress towards a molecular understanding of Marfan syndrome. Am J Med Genet C Semin Med Genet 139:4–9

    Article  CAS  Google Scholar 

  23. Bunton TE, Biery NJ, Myers L et al (2001) Phenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome. Circ Res 88:37–43

    Article  CAS  PubMed  Google Scholar 

  24. van Karnebeek CD, Naeff MS, Mulder BJ et al (2001) Natural history of cardiovascular manifestations in Marfan syndrome. Arch Dis Child 84:129–137

    Article  PubMed Central  PubMed  Google Scholar 

  25. Germain DP (2007) Ehlers-Danlos syndrome type IV. Orphanet J Rare Dis 2:32

    Article  PubMed Central  PubMed  Google Scholar 

  26. Loeys BL, Chen J, Neptune ER et al (2005) A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat Genet 37:275–281

    Article  CAS  PubMed  Google Scholar 

  27. Robicsek F, Thubrikar MJ, Cook JW, Fowler B (2004) The congenitally bicuspid aortic valve: how does it function? Why does it fail? Ann Thorac Surg 77:177–185

    Article  PubMed  Google Scholar 

  28. Mahadevia R, Barker AJ, Schnell S et al (2014) Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 129:673–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Keane MG, Wiegers SE, Plappert T et al (2000) Bicuspid aortic valves are associated with aortic dilatation out of proportion to coexistent valvular lesions. Circulation 102:III35–III39

    Article  CAS  PubMed  Google Scholar 

  30. Hahn RT, Roman MJ, Mogtader AH, Devereux RB (1992) Association of aortic dilation with regurgitant, stenotic and functionally normal bicuspid aortic valves. JAC 19:283–288

    Article  CAS  Google Scholar 

  31. Yasuda H, Nakatani S, Stugaard M et al (2003) Failure to prevent progressive dilation of ascending aorta by aortic valve replacement in patients with bicuspid aortic valve: comparison with tricuspid aortic valve. Circulation 108(Suppl 1):II291–4

    PubMed  Google Scholar 

  32. Fedak PWM, de Sa MPL, Verma S et al (2003) Vascular matrix remodeling in patients with bicuspid aortic valve malformations: implications for aortic dilatation. J Thorac Cardiovasc Surg 126:797–806

    Article  PubMed  Google Scholar 

  33. Verma S, Yanagawa B, Kalra S et al (2013) Knowledge, attitudes, and practice patterns in surgical management of bicuspid aortopathy: a survey of 100 cardiac surgeons. J Thorac Cardiovasc Surg 146:1033–1040.e4

    Article  PubMed  Google Scholar 

  34. Ruddy JM, Jones JA, Ikonomidis JS (2013) Pathophysiology of thoracic aortic aneurysm (TAA): is it not one uniform aorta? Role of embryologic origin. Prog Cardiovasc Dis 56:68–73

    Article  PubMed Central  PubMed  Google Scholar 

  35. Steed MM, Tyagi N, Sen U et al (2010) Functional consequences of the collagen/elastin switch in vascular remodeling in hyperhomocysteinemic wild-type, eNOS-/-, and iNOS-/- mice. Am J Physiol Lung Cell Mol Physiol 299:L301–L311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Fedak PWM, McCarthy PM, Bonow RO (2008) Evolving concepts and technologies in mitral valve repair. Circulation 117:963–974

    Article  PubMed  Google Scholar 

  37. Lillehei CW, Levy MJ, Bonnabeau RC (1964) Mitral valve replacement with preservation of papillary muscles and chordae tendineae. J Thorac Cardiovasc Surg 47:532–543

    CAS  PubMed  Google Scholar 

  38. McCarthy PM (2002) Does the intertrigonal distance dilate? Never say never. J Thorac Cardiovasc Surg 124:1078–1079

    Article  PubMed  Google Scholar 

  39. Rabkin E, Aikawa M, Stone JR et al (2001) Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation 104:2525–2532

    Article  CAS  PubMed  Google Scholar 

  40. Caira FC, Stock SR, Gleason TG et al (2006) Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol 47:1707–1712

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Grande-Allen KJ, Griffin BP, Ratliff NB et al (2003) Glycosaminoglycan profiles of myxomatous mitral leaflets and chordae parallel the severity of mechanical alterations. JAC 42:271–277

    Article  CAS  Google Scholar 

  42. David TE, Kuo J, Armstrong S (1997) Aortic and mitral valve replacement with reconstruction of the intervalvular fibrous body. J Thorac Cardiovasc Surg 114:766–771. Discussion 771–772

    Article  CAS  PubMed  Google Scholar 

  43. David TE (1998) The use of pericardium in acquired heart disease: a review article. J Heart Valve Dis 7:13–18

    CAS  PubMed  Google Scholar 

  44. Bolling SF, Pagani FD, Deeb GM, Bach DS (1998) Intermediate-term outcome of mitral reconstruction in cardiomyopathy. J Thorac Cardiovasc Surg 115:381–638. Discussion 387–388

    Article  CAS  PubMed  Google Scholar 

  45. Tibayan FA, Rodriguez F, Langer F et al (2003) Annular remodeling in chronic ischemic mitral regurgitation: ring selection implications. Ann Thorac Surg 76:1549–1554. Discussion 1554–1555

    Article  PubMed  Google Scholar 

  46. Spoor MT, Geltz A, Bolling SF (2006) Flexible versus nonflexible mitral valve rings for congestive heart failure: differential durability of repair. Circulation 114:I67–I71

    Article  PubMed  Google Scholar 

  47. David TE, Burns RJ, Bacchus CM, Druck MN (1984) Mitral valve replacement for mitral regurgitation with and without preservation of chordae tendineae. J Thorac Cardiovasc Surg 88:718–725

    CAS  PubMed  Google Scholar 

  48. Pibarot P, Dumesnil JG (2000) Hemodynamic and clinical impact of prosthesis-patient mismatch in the aortic valve position and its prevention. J Am Coll Cardiol 36:1131–1141

    Article  CAS  PubMed  Google Scholar 

  49. Suri RM, Zehr KJ, Sundt TM et al (2009) Left ventricular mass regression after porcine versus bovine aortic valve replacement: a randomized comparison. Ann Thorac Surg 88:1232–1237

    Article  PubMed  Google Scholar 

  50. Duebener LF, Stierle U, Erasmi A et al (2005) Ross procedure and left ventricular mass regression. Circulation 112:I415–I422

    PubMed  Google Scholar 

  51. Tzikas A, Geleijnse ML, Van Mieghem NM et al (2011) Left ventricular mass regression one year after transcatheter aortic valve implantation. Ann Thorac Surg 91:685–691

    Article  PubMed  Google Scholar 

  52. Walther T, Schubert A, Falk V et al (2002) Left ventricular reverse remodeling after surgical therapy for aortic stenosis: correlation to Renin-Angiotensin system gene expression. Circulation 106:I23–I26

    PubMed  Google Scholar 

  53. Müller J, Wallukat G, Weng YG et al (1997) Weaning from mechanical cardiac support in patients with idiopathic dilated cardiomyopathy. Circulation 96:542–549

    Article  PubMed  Google Scholar 

  54. Maybaum S, Mancini D, Xydas S et al (2007) Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation 115:2497–2505

    Article  PubMed  Google Scholar 

  55. Bruckner BA, Stetson SJ, Perez-Verdia A et al (2001) Regression of fibrosis and hypertrophy in failing myocardium following mechanical circulatory support. J Heart Lung Transplant 20:457–464

    Article  CAS  PubMed  Google Scholar 

  56. Klotz S, Foronjy RF, Dickstein ML et al (2005) Mechanical unloading during left ventricular assist device support increases left ventricular collagen cross-linking and myocardial stiffness. Circulation 112:364–374

    Article  CAS  PubMed  Google Scholar 

  57. Barbone A, Holmes JW, Heerdt PM et al (2001) Comparison of right and left ventricular responses to left ventricular assist device support in patients with severe heart failure: a primary role of mechanical unloading underlying reverse remodeling. Circulation 104:670–675

    Article  CAS  PubMed  Google Scholar 

  58. Butler CR, Jugdutt BI (2012) The paradox of left ventricular assist device unloading and myocardial recovery in end-stage dilated cardiomyopathy: implications for heart failure in the elderly. Heart Fail Rev 17:615–633

    Article  PubMed  Google Scholar 

  59. Li YY, Feng Y, McTiernan CF et al (2001) Downregulation of matrix metalloproteinases and reduction in collagen damage in the failing human heart after support with left ventricular assist devices. Circulation 104:1147–1152

    Article  CAS  PubMed  Google Scholar 

  60. Ott HC, Matthiesen TS, Goh S-K et al (2008) Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat Med 14:213–221

    Article  CAS  PubMed  Google Scholar 

  61. Fedak PWM, Weisel RD, Verma S et al (2003) Restoration and regeneration of failing myocardium with cell transplantation and tissue engineering. Semin Thorac Cardiovasc Surg 15:277–286

    Article  PubMed  Google Scholar 

  62. Fedak PWM, Bai L, Turnbull J et al (2012) Cell therapy limits myofibroblast differentiation and structural cardiac remodeling: basic fibroblast growth factor-mediated paracrine mechanism. Circ Heart Fail 5:349–356

    Article  CAS  PubMed  Google Scholar 

  63. Yoo KJ, Li RK, Weisel RD et al (2000) Autologous smooth muscle cell transplantation improved heart function in dilated cardiomyopathy. Ann Thorac Surg 70:859–865

    Article  CAS  PubMed  Google Scholar 

  64. Yoo KJ, Li RK, Weisel RD et al (2000) Heart cell transplantation improves heart function in dilated cardiomyopathic hamsters. Circulation 102:III204–III209

    Article  CAS  PubMed  Google Scholar 

  65. Leobon B, Garcin I, Vilquin JT et al (2002) Do engrafted skeletal myoblasts contract in infarcted myocardium? Circulation 106:549–549

    Google Scholar 

  66. McMurray J, Pfeffer MA (2002) New therapeutic options in congestive heart failure: part II. Circulation 105:2223–2228

    Article  PubMed  Google Scholar 

  67. Soonpaa MH, Koh GY, Klug MG, Field LJ (1994) Formation of nascent intercalated disks between grafted fetal cardiomyocytes and host myocardium. Science 264:98–101

    Article  CAS  PubMed  Google Scholar 

  68. Ruhparwar A, Tebbenjohanns J, Niehaus M et al (2002) Transplanted fetal cardiomyocytes as cardiac pacemaker. Eur J Cardiothorac Surg 21:853–857

    Article  PubMed  Google Scholar 

  69. Fedak PWM (2008) Paracrine effects of cell transplantation: modifying ventricular remodeling in the failing heart. Semin Thorac Cardiovasc Surg 20:87–93

    Article  PubMed  Google Scholar 

  70. Hornberger LK, Singhroy S, Cavalle-Garrido T (2000) Synthesis of extracellular matrix and adhesion through β1 integrins are critical for fetal ventricular myocyte proliferation. Circ Res 87:508–515

    Google Scholar 

  71. Kang K, Sun L, Xiao Y et al (2012) Aged human cells rejuvenated by cytokine enhancement of biomaterials for surgical ventricular restoration. J Am Coll Cardiol 60:2237–2249

    Article  CAS  PubMed  Google Scholar 

  72. Langer R, Vacanti JP (1993) Tissue engineering. Science 260:920–926

    Article  CAS  PubMed  Google Scholar 

  73. Matsubayashi K, Fedak PWM, Mickle DAG et al (2003) Improved left ventricular aneurysm repair with bioengineered vascular smooth muscle grafts. Circulation 108(Suppl 1):II219–25

    PubMed  Google Scholar 

  74. Akhyari P, Fedak PWM, Weisel RD et al (2002) Mechanical stretch regimen enhances the formation of bioengineered autologous cardiac muscle grafts. Circulation 106:I137–I142

    Article  PubMed  Google Scholar 

  75. Zimmermann W-H, Eschenhagen T (2003) Cardiac tissue engineering for replacement therapy. Heart Fail Rev 8:259–269

    Article  CAS  PubMed  Google Scholar 

  76. Quarti A, Nardone S, Colaneri M et al (2011) Preliminary experience in the use of an extracellular matrix to repair congenital heart diseases. Interact Cardiovasc Thorac Surg 13:569–572

    Article  PubMed  Google Scholar 

  77. Mewhort HEM, Turnbull JD, Meijndert HC et al (2014) Epicardial infarct repair with basic fibroblast growth factor-enhanced CorMatrix-ECM biomaterial attenuates postischemic cardiac remodeling. J Thorac Cardiovasc Surg 147:1650–1659

    Article  CAS  PubMed  Google Scholar 

  78. Voytik-Harbin SL, Brightman AO, Kraine MR et al (1997) Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 67:478–491

    Article  CAS  PubMed  Google Scholar 

  79. Badylak S, Freytes D, Gilbert T (2009) Extracellular matrix as a biological scaffold material: structure and function. Acta Biomaterialia 5:1–13

    Article  CAS  PubMed  Google Scholar 

  80. Brown BN, Barnes CA, Kasick RT et al (2010) Surface characterization of extracellular matrix scaffolds. Biomaterials 31:428–437

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Brown B, Lindberg K, Reing J et al (2006) The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng 12:519–526

    Article  CAS  PubMed  Google Scholar 

  82. Badylak SF (2007) The extracellular matrix as a biologic scaffold material. Biomaterials 28:3587–3593

    Article  CAS  PubMed  Google Scholar 

  83. Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12:367–377

    Article  CAS  PubMed  Google Scholar 

  84. Daly KA, Stewart-Akers AM, Hara H et al (2009) Effect of the alphaGal epitope on the response to small intestinal submucosa extracellular matrix in a nonhuman primate model. Tissue Eng Part A 15:3877–3888

    Article  CAS  PubMed  Google Scholar 

  85. Badylak S, Obermiller J, Geddes L, Matheny R (2003) Extracellular matrix for myocardial repair. Heart Surg Forum 6:E20–E26

    Article  PubMed  Google Scholar 

  86. Witt RG, Raff G, Van Gundy J et al (2013) Short-term experience of porcine small intestinal submucosa patches in paediatric cardiovascular surgery. Eur J Cardiothorac Surg 44:72–76

    Article  PubMed  Google Scholar 

  87. Scholl FG, Boucek MM, Chan K-C et al (2010) Preliminary experience with cardiac reconstruction using decellularized porcine extracellular matrix scaffold: human applications in congenital heart disease. World J Pediatr Congenit Heart Surg 1:132–136

    Article  PubMed  Google Scholar 

  88. Balmer GM, Bollini S, Dubé KN et al (2014) Dynamic haematopoietic cell contribution to the developing and adult epicardium. Nat Commun 5:1–12

    Article  CAS  Google Scholar 

  89. Smart N, Riley PR (2012) The epicardium as a candidate for heart regeneration. Future Cardiol 8:53–69

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. van Wijk B, Gunst QD, Moorman AFM, van den Hoff MJB (2012) Cardiac regeneration from activated epicardium. PLoS ONE 7:e44692

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  91. Cheng A, Langer F, Nguyen TC et al (2006) Transmural left ventricular shear strain alterations adjacent to and remote from infarcted myocardium. J Heart Valve Dis 15:209–218. Discussion 218

    PubMed  Google Scholar 

  92. Joyce E, Hoogslag GE, Leong DP et al (2014) Association between left ventricular global longitudinal strain and adverse left ventricular dilatation after ST-segment-elevation myocardial infarction. Circ Cardiovasc Imaging 7:74–81

    Article  PubMed  Google Scholar 

  93. Shah PK (2005) Preservation of cardiac extracellular matrix by passive myocardial restraint: an emerging new therapeutic paradigm in the prevention of adverse remodeling and progressive heart failure. Circulation 112:1245–1247

    Article  PubMed  Google Scholar 

  94. Pilla JJ, Blom AS, Gorman JH et al (2005) Early postinfarction ventricular restraint improves borderzone wall thickening dynamics during remodeling. Ann Thorac Surg 80:2257–2262

    Article  PubMed  Google Scholar 

  95. Magovern JA, Teekell-Taylor L, Mankad S et al (2006) Effect of a flexible ventricular restraint device on cardiac remodeling after acute myocardial infarction. ASAIO J 52:196–200

    Article  PubMed  Google Scholar 

  96. Goldstein S (1999) Passive ventricular restraint. Cardiovasc Res 44:468–469

    Article  CAS  PubMed  Google Scholar 

  97. Ghanta RK, Rangaraj A, Umakanthan R et al (2007) Adjustable, physiological ventricular restraint improves left ventricular mechanics and reduces dilatation in an ovine model of chronic heart failure. Circulation 115:1201–1210

    PubMed  Google Scholar 

  98. Dixon JA, Goodman AM, Gaillard WF et al (2011) Hemodynamics and myocardial blood flow patterns after placement of a cardiac passive restraint device in a model of dilated cardiomyopathy. J Thorac Cardiovasc Surg 142:1038–1045

    Article  PubMed Central  PubMed  Google Scholar 

  99. Blom AS, Pilla JJ, Arkles J et al (2007) Ventricular restraint prevents infarct expansion and improves borderzone function after myocardial infarction: a study using magnetic resonance imaging, three-dimensional surface modeling, and myocardial tagging. Ann Thorac Surg 84:2004–2010

    Article  PubMed  Google Scholar 

  100. Acker MA, Bolling S, Shemin R et al (2006) Mitral valve surgery in heart failure: insights from the Acorn Clinical Trial. J Thorac Cardiovasc Surg 132:568–577 (e1–e4)

    Article  PubMed  Google Scholar 

  101. Bayomy AF, Bauer M, Qiu Y, Liao R (2012) Regeneration in heart disease-Is ECM the key? Life Sci 91:823–827

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Mercer SE, Odelberg SJ, Simon H-G (2013) A dynamic spatiotemporal extracellular matrix facilitates epicardial-mediated vertebrate heart regeneration. Dev Biol 382:457–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  103. Winter EM, Grauss RW, Hogers B et al (2007) Preservation of left ventricular function and attenuation of remodeling after transplantation of human epicardium-derived cells into the infarcted mouse heart. Circulation 116:917–927

    Article  CAS  PubMed  Google Scholar 

  104. Zhou B, Honor LB, He H et al (2011) Adult mouse epicardium modulates myocardial injury by secreting paracrine factors. J Clin Invest 121:1894–1904

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Smart N, Risebro CA, Melville AAD et al (2007) Thymosin beta4 induces adult epicardial progenitor mobilization and neovascularization. Nature 445:177–182

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul W. M. Fedak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Mewhort, H., Fedak, P. (2015). Extracellular Matrix and Cardiac Disease: Surgical and Scientific Perspectives. In: Dixon, I., Wigle, J. (eds) Cardiac Fibrosis and Heart Failure: Cause or Effect?. Advances in Biochemistry in Health and Disease, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-319-17437-2_17

Download citation

Publish with us

Policies and ethics