Skip to main content

Directing Convection to Pattern Thin Polymer Films: Coffee Rings

  • Chapter
Polymer Surfaces in Motion

Abstract

Investigation into the evaporation of a droplet consisting of nonvolatile solutes is not only for a better understanding of the mechanism that underpins the evaporation process but also for utilizing such a simple strategy it presents to craft intriguing self-assembled structures. In this chapter, we first review the recent progress on the theory of the droplet evaporation on substrate, in particular, focusing on the evaporative flux at the three-phase contact line, the radial and circular flows inside the evaporating droplet, and the interactions between solute and substrate. Subsequently, we discuss the recent advances in controlling evaporative self-assembly of solutes by restricting the evaporation process in confined geometries, including controlled evaporative self-assembly (CESA) in curve-on-flat geometries and flow-enabled self-assembly (FESA). The ability to yield well-defined dissipative structures from a variety of nanomaterials at low cost holds promise for potential applications in electronics, nanodevices, and advanced functional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389, 827–829 (1997)

    Google Scholar 

  2. Pauliac-Vaujour, E., Stannard, A., Martin, C.P., Blunt, M.O., Notingher, I., Moriarty, P.J., Vancea, I., Thiele, U.: Fingering instabilities in dewetting nanofluids. Phys. Rev. Lett. 100, 176102 (2008)

    Google Scholar 

  3. Nguyen, V.X., Stebe, K.J.: Patterning of small particles by a surfactant-enhanced Marangoni-Benard instability. Phys. Rev. Lett. 88, 164501 (2002)

    Google Scholar 

  4. Deegan, R.D.: Pattern formation in drying drops. Phys. Rev. E 61, 475 (2000)

    Google Scholar 

  5. Lin, Y., Böker, A., He, J., Sill, K., Xiang, H., Abetz, C., Li, X., Wang, J., Emrick, T., Long, S.: Self-directed self-assembly of nanoparticle/copolymer mixtures. Nature 434, 55–59 (2005)

    Google Scholar 

  6. Kim, Y., Han, H., Kim, Y., Lee, W., Alexe, M., Baik, S., Kim, J.K.: Ultrahigh density array of epitaxial ferroelectric nanoislands on conducting substrates. Nano Lett. 10, 2141–2146 (2010)

    Google Scholar 

  7. Park, S., Lim, J.H., Chung, S.W., Mirkin, C.A.: Self-assembly of mesoscopic metal-polymer amphiphiles. Science 303, 348–351 (2004)

    Google Scholar 

  8. Whitesides, G.M., Grzybowski, B.: Self-assembly at all scales. Science 295, 2418–2421 (2002)

    Google Scholar 

  9. Xu, J., Xia, J.F., Hong, S.W., Lin, Z.Q., Qiu, F., Yang, Y.L.: Self-assembly of gradient concentric rings via solvent evaporation from a capillary bridge. Phys. Rev. Lett. 96, 066104 (2006)

    Google Scholar 

  10. Byun, M., Bowden, N.B., Lin, Z.Q.: Hierarchically organized structures engineered from controlled evaporative self-assembly. Nano Lett. 10, 3111–3117 (2010)

    Google Scholar 

  11. Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756–765 (2000)

    Google Scholar 

  12. Langmuir, I.: The evaporation of small spheres. Phys. Rev. 12, 368–370 (1918)

    Google Scholar 

  13. Poulard, C., Guéna, G., Cazabat, A.M.: Diffusion-driven evaporation of sessile drops. J. Phys. Condens. Matter 17, S4213 (2005)

    Google Scholar 

  14. Fuchs, N.A.: Evaporation and Droplet Growth in Gaseous Media. Elsevier, New York (2013)

    Google Scholar 

  15. Houghton, H.G.: A study of the evaporation of small water drops. J. Appl. Phys. 4, 419–424 (1933)

    Google Scholar 

  16. Knacke, O., Stranski, I.N.: The mechanism of evaporation. Prog. Metal Phys. 6, 181–235 (1956)

    Google Scholar 

  17. Cazabat, A.-M., Guena, G.: Evaporation of macroscopic sessile droplets. Soft Matter 6, 2591–2612 (2010)

    Google Scholar 

  18. Prosperetti, A., Plesset, M.S.: The stability of an evaporating liquid surface. Phys. Fluids 27, 1590–1602 (1984)

    Google Scholar 

  19. Burelbach, J.P., Bankoff, S.G., Davis, S.H.: Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech. 195, 463–494 (1988)

    Google Scholar 

  20. Marek, R., Straub, J.: Analysis of the evaporation coefficient and the condensation coefficient of water. Int. J. Heat Mass Transfer. 44, 39–53 (2001)

    Google Scholar 

  21. Frohn, A., Roth, N.: Dynamics of Droplets. Springer, New York (2000)

    Google Scholar 

  22. Hu, H., Larson, R.G.: Evaporation of a sessile droplet on a substrate. J. Phys. Chem. B 106, 1334–1344 (2002)

    Google Scholar 

  23. Semenov, S., Starov, V.M., Rubio, R.G., Velarde, M.G.: Instantaneous distribution of fluxes in the course of evaporation of sessile liquid droplets: computer simulations. Colloid Surf. A 372, 127–134 (2010)

    Google Scholar 

  24. Nguyen, T.A.H., Nguyen, A.V., Hampton, M.A., Xu, Z.P., Huang, L., Rudolph, V.: Theoretical and experimental analysis of droplet evaporation on solid surfaces. Chem. Eng. Sci. 69, 522–529 (2012)

    Google Scholar 

  25. Anderson, D.M., Davis, S.H.: The spreading of volatile liquid droplets on heated surfaces. Phys. Fluids 7, 248–265 (1995)

    Google Scholar 

  26. Shahidzadeh-Bonn, N., Rafaï, S., Azouni, A., Bonn, D.: Evaporating droplets. J. Fluid Mech. 549, 307–313 (2006)

    Google Scholar 

  27. Birdi, K.S., Vu, D.T., Winter, A.: A study of the evaporation rates of small water drops placed on a solid surface. J. Phys. Chem. 93, 3702–3703 (1989)

    Google Scholar 

  28. Dettre, R.H., Johnson, R.E.: Contact angle hysteresis. IV. Contact angle measurements on heterogeneous surfaces 1. J. Phys. Chem. 69, 1507–1515 (1965)

    Google Scholar 

  29. Snoeijer, J.H., Andreotti, B.: Moving contact lines: scales, regimes, and dynamical transitions. Annu. Rev. Fluid Mech. 45, 269–292 (2013)

    Google Scholar 

  30. Rowan, S.M., Newton, M.I., McHale, G.: Evaporation of microdroplets and the wetting of solid surfaces. J. Phys. Chem. 99, 13268–13271 (1995)

    Google Scholar 

  31. Picknett, R.G., Bexon, R.: The evaporation of sessile or pendant drops in still air. J. Colloid Interface Sci 61, 336–350 (1977)

    Google Scholar 

  32. Dunn, G.J., Wilson, S.K., Duffy, B.R., David, S., Sefiane, K.: The strong influence of substrate conductivity on droplet evaporation. J. Fluid Mech. 623, 329–351 (2009)

    Google Scholar 

  33. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69, 931–980 (1997)

    Google Scholar 

  34. Clausius, R.: Ueber die bewegende Kraft der Wärme und die Gesetze, welche sich daraus für die Wärmelehre selbst ableiten lassen. Ann. Phys. Berlin 155, 368–397 (1850)

    Google Scholar 

  35. Murisic, N., Kondic, L.: On evaporation of sessile drops with moving contact lines. J. Fluid Mech. 679, 219–246 (2011)

    Google Scholar 

  36. Siregar, D.P., Kuerten, J.G.M., van der Geld, C.W.M.: Numerical simulation of the drying of inkjet-printed droplets. J. Colloid Interface Sci 392, 388–395 (2013)

    Google Scholar 

  37. Berteloot, G., Pham, C.T., Daerr, A., Lequeux, F., Limat, L.: Evaporation-induced flow near a contact line: consequences on coating and contact angle. Europhys. Lett. 83, 14003 (2008)

    Google Scholar 

  38. Cachile, M., Bénichou, O., Cazabat, A.M.: Evaporating droplets of completely wetting liquids. Langmuir 18, 7985–7990 (2002)

    Google Scholar 

  39. Guéna, G., Poulard, C., Voué, M., De Coninck, J., Cazabat, A.M.: Evaporation of sessile liquid droplets. Colloid Surf. A 291, 191–196 (2006)

    Google Scholar 

  40. Joshi, A., Sun, Y.: Wetting dynamics and particle deposition for an evaporating colloidal drop: a lattice Boltzmann study. Phys. Rev. E 82, 041401 (2010)

    Google Scholar 

  41. Janeček, V., Nikolayev, V.S.: Contact line singularity at partial wetting during evaporation driven by substrate heating. Europhys. Lett. 100, 14003 (2012)

    Google Scholar 

  42. Doumenc, F., Guerrier, B.: Drying of a solution in a meniscus: a model coupling the liquid and the gas phases. Langmuir 26, 13959–13967 (2010)

    Google Scholar 

  43. Eggers, J., Pismen, L.M.: Nonlocal description of evaporating drops. Phys. Fluids 22, 112101 (2010)

    Google Scholar 

  44. Hołyst, R., Litniewski, M., Jakubczyk, D., Kolwas, K., Kolwas, M., Kowalski, K., Migacz, S., Palesa, S., Zientara, M.: Evaporation of freely suspended single droplets: experimental, theoretical and computational simulations. Rep. Prog. Phys. 76, 034601 (2013)

    Google Scholar 

  45. Crafton, E.F., Black, W.Z.: Heat transfer and evaporation rates of small liquid droplets on heated horizontal surfaces. Int. J. Heat Mass Transfer 47, 1187–1200 (2004)

    Google Scholar 

  46. Cioulachtjian, S., Launay, S., Boddaert, S., Lallemand, M.: Experimental investigation of water drop evaporation under moist air or saturated vapour conditions. Int. J. Therm. Sci. 49, 859–866 (2010)

    Google Scholar 

  47. Chini, S.F., Amirfazli, A.: Understanding the evaporation of spherical drops in quiescent environment. Colloid Surf. A 432, 82–88 (2013)

    Google Scholar 

  48. Briones, A.M., Ervin, J.S., Putnam, S.A., Byrd, L.W., Jones, J.G.: A novel kinetically-controlled de-pinning model for evaporating water microdroplets. Int. Commun. Heat Mass. 39, 1311–1319 (2012)

    Google Scholar 

  49. Gelderblom, H., Bloemen, O., Snoeijer, J.H.: Stokes flow near the contact line of an evaporating drop. J. Fluid Mech. 709, 69–84 (2012)

    Google Scholar 

  50. Weon, B.M., Je, J.H., Poulard, C.: Convection-enhanced water evaporation. AIP Advances 012102 (2011)

    Google Scholar 

  51. Dehaeck, S., Rednikov, A., Colinet, P.: Vapor-based interferometric measurement of local evaporation rate and interfacial temperature of evaporating droplets. Langmuir 30, 2002–2008 (2014)

    Google Scholar 

  52. Fischer, B.J.: Particle convection in an evaporating colloidal droplet. Langmuir 18, 60–67 (2001)

    Google Scholar 

  53. Popov, Y.: Evaporative deposition patterns: spatial dimensions of the deposit. Phys. Rev. E 71, 036313 (2005)

    Google Scholar 

  54. Hamamoto, Y., Christy, J., Sefiane, K.: Order-of-magnitude increase in flow velocity driven by mass conservation during the evaporation of sessile drops. Phys. Rev. E 83, 051602 (2011)

    Google Scholar 

  55. Bodiguel, H., Leng, J.: Imaging the drying of a colloidal suspension: velocity field. Chem. Eng. Process. 68, 60–63 (2013)

    Google Scholar 

  56. Maki, K.L., Kumar, S.: Fast evaporation of spreading droplets of colloidal suspensions. Langmuir 27, 11347–11363 (2011)

    Google Scholar 

  57. Scriven, L., Sternling, C.: The Marangoni effects. Nature 187, 186–188 (1960)

    Google Scholar 

  58. Hu, H., Larson, R.G.: Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21, 3972–3980 (2005)

    Google Scholar 

  59. Hu, H., Larson, R.G.: Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110, 7090–7094 (2006)

    Google Scholar 

  60. Assenheimer, M., Steinberg, V.: Observation of coexisting upflow and downflow hexagons in Boussinesq Rayleigh-Bénard convection. Phys. Rev. Lett. 76, 756–759 (1996)

    Google Scholar 

  61. Morris, S.W., Bodenschatz, E., Cannell, D.S., Ahlers, G.: Spiral defect chaos in large aspect ratio Rayleigh-Bénard convection. Phys. Rev. Lett. 71, 2026–2029 (1993)

    Google Scholar 

  62. Block, M.J.: Surface tension as the cause of Benard cells and surface deformation in a liquid film. Nature 178, 650–651 (1956)

    Google Scholar 

  63. Buffone, C., Sefiane, K.: Investigation of thermocapillary convective patterns and their role in the enhancement of evaporation from pores. Int. J. Multiphase Flow 30, 1071–1091 (2004)

    Google Scholar 

  64. Buffone, C., Sefiane, K., Christy, J.R.E.: Experimental investigation of self-induced thermocapillary convection for an evaporating meniscus in capillary tubes using micro-particle image velocimetry. Phys. Fluids 17, 052104 (2005)

    Google Scholar 

  65. Buffone, C., Sefiane, K.: IR measurements of interfacial temperature during phase change in a confined environment. Exp. Therm. Fluid. Sci. 29, 65–74 (2004)

    Google Scholar 

  66. Pearson, J.R.A.: On convection cells induced by surface tension. J. Fluid Mech. 4, 489–500 (1958)

    Google Scholar 

  67. Nield, D.A.: Surface tension and buoyancy effects in cellular convection. J. Fluid Mech. 19, 341–352 (1964)

    Google Scholar 

  68. Barmi, M.R., Meinhart, C.D.: Convective flows in evaporating sessile droplets. J. Phys. Chem. B 118, 2414–2421 (2014)

    Google Scholar 

  69. Hu, Y.-C., Zhou, Q., Ye, H.-M., Wang, Y.-F., Cui, L.-S.: Peculiar surface profile of poly(ethylene oxide) film with ring-like nucleation distribution induced by Marangoni flow effect. Colloid Surf. A 428, 39–46 (2013)

    Google Scholar 

  70. Barash, L., Bigioni, T., Vinokur, V., Shchur, L.: Evaporation and fluid dynamics of a sessile drop of capillary size. Phys. Rev. E 79, 046301 (2009)

    Google Scholar 

  71. Xu, X., Luo, J., Guo, D.: Criterion for reversal of thermal Marangoni flow in drying drops. Langmuir 26, 1918–1922 (2009)

    Google Scholar 

  72. Thompson, I., Duan, F., Ward, C.: Absence of Marangoni convection at Marangoni numbers above 27,000 during water evaporation. Phys. Rev. E 80, 056308 (2009)

    Google Scholar 

  73. Hu, H., Larson, R.G.: Analysis of the microfluid flow in an evaporating sessile droplet. Langmuir 21, 3963–3971 (2005)

    Google Scholar 

  74. Savino, R., Paterna, D., Favaloro, N.: Buoyancy and Marangoni effects in an evaporating drop. J. Thermophys. Heat Transfer. 16, 562–574 (2002)

    Google Scholar 

  75. Steinchen, A., Sefiane, K.: Self-organised Marangoni motion at evaporating drops or in capillary menisci–thermohydrodynamical model. J. Non Equil. Thermody. 30, 39–51 (2005)

    Google Scholar 

  76. Kang, K.H., Lim, H.C., Lee, H.W., Lee, S.J.: Evaporation-induced saline Rayleigh convection inside a colloidal droplet. Phys. Fluids 25, 042001 (2013)

    Google Scholar 

  77. Yunker, P.J., Still, T., Lohr, M.A., Yodh, A.G.: Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476, 308–311 (2011)

    Google Scholar 

  78. Larson, R.G.: Re-shaping the coffee ring. Angew. Chem. Int. Ed. 51, 2546–2548 (2012)

    Google Scholar 

  79. Bhardwaj, R., Fang, X., Somasundaran, P., Attinger, D.: Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram. Langmuir 26, 7833–7842 (2010)

    Google Scholar 

  80. Anyfantakis, M., Baigl, D.: Dynamic photocontrol of the coffee-ring effect with optically tunable particle stickiness. Angew. Chem. Int. Ed. 126, 14301–14305 (2014)

    Google Scholar 

  81. Xu, J., Xia, J., Lin, Z.: Evaporation-induced self-assembly of nanoparticles from a sphere-on-flat geometry. Angew. Chem. Int. Ed. 119, 1892–1895 (2007)

    Google Scholar 

  82. Li, B., Han, W., Jiang, B., Lin, Z.: Crafting threads of diblock copolymer micelles via flow-enabled self-assembly. ACS Nano 8, 2936–2942 (2014)

    Google Scholar 

  83. Harris, D.J., Hu, H., Conrad, J.C., Lewis, J.A.: Patterning colloidal films via evaporative lithography. Phys. Rev. Lett. 98, 148301 (2007)

    Google Scholar 

  84. Gleiche, M., Chi, L.F., Fuchs, H.: Nanoscopic channel lattices with controlled anisotropic wetting. Nature 403, 173–175 (2000)

    Google Scholar 

  85. Chi, L.F., Rakers, S., Hartig, M., Gleiche, M., Fuchs, H., Schmid, G.: Monolayers of nanosized Au-55-clusters: preparation and characterization. Colloid Surf. A 171, 241–248 (2000)

    Google Scholar 

  86. Prevo, B.G., Velev, O.D.: Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions. Langmuir 20, 2099–2107 (2004)

    Google Scholar 

  87. Yabu, H., Shimomura, M.: Preparation of self-organized mesoscale polymer patterns on a solid substrate: continuous pattern formation from a receding meniscus. Adv. Funct. Mater. 15, 575– 581 (2005)

    Google Scholar 

  88. Hong, S.W., Byun, M., Lin, Z.Q.: Robust self-assembly of highly ordered complex structures by controlled evaporation of confined microfluids. Angew. Chem. Int. Ed. 48, 512–516 (2009)

    Google Scholar 

  89. Hong, S.W., Giri, S., Lin, V.S.Y., Lin, Z.Q.: Simple route to gradient concentric metal and metal oxide rings. Chem. Mater. 18, 5164–5166 (2006)

    Google Scholar 

  90. Hong, S.W., Jeong, W., Ko, H., Kessler, M.R., Tsukruk, V.V., Lin, Z.Q.: Directed self-assembly of gradient concentric carbon nanotube rings. Adv. Funct. Mater. 18, 2114–2122 (2008)

    Google Scholar 

  91. Hong, S.W., Wang, J., Lin, Z.Q.: Evolution of ordered block copolymer serpentines into a macroscopic, hierarchically ordered web. Angew. Chem. Int. Ed. 48, 8356–8360 (2009)

    Google Scholar 

  92. Hong, S.W., Xia, J.F., Byun, M., Zou, Q.Z., Lin, Z.Q.: Mesoscale patterns formed by evaporation of a polymer solution in the proximity of a sphere on a smooth substrate: molecular weight and curvature effects. Macromolecules 40, 2831–2836 (2007)

    Google Scholar 

  93. Hong, S.W., Xia, J., Lin, Z.: Spontaneous formation of mesoscale polymer patterns in an evaporating bound solution. Adv. Mater. 19, 1413–1417 (2007)

    Google Scholar 

  94. Hong, S.W., Xu, J., Lin, Z.Q.: Template-assisted formation of gradient concentric gold rings. Nano Lett. 6, 2949–2954 (2006)

    Google Scholar 

  95. Hong, S.W., Xu, J., Xia, J.F., Lin, Z.Q., Qiu, F., Yang, Y.L.: Drying mediated pattern formation in a capillary-held organometallic polymer solution. Chem. Mater. 17, 6223–6226 (2005)

    Google Scholar 

  96. Abkarian, M., Nunes, J., Stone, H.A.: Colloidal crystallization and banding in a cylindrical geometry. J. Am. Chem. Soc. 126, 5978–5979 (2004)

    Google Scholar 

  97. Wang, H., Li, X., Nakamura, H., Miyazaki, M., Maeda, H.: Continuous particle self-arrangement in a long microcapillary. Adv. Mater. 14, 1662–1666 (2002)

    Google Scholar 

  98. Lin, Z., Granick, S.: Patterns formed by droplet evaporation from a restricted geometry. J. Am. Chem. Soc. 127, 2816–2817 (2005)

    Google Scholar 

  99. Han, W., Li, B., Lin, Z.: Drying-mediated assembly of colloidal nanoparticles into large-scale microchannels. ACS Nano 7, 6079–6085 (2013)

    Google Scholar 

  100. Byun, M., Han, W., Li, B., Hong, S.W., Cho, J.W., Zou, Q., Lin, Z.: Guided organization of λ-DNA into microring arrays from liquid capillary bridges. Small 7, 1641–1646 (2011)

    Google Scholar 

  101. Han, W., Lin, Z.: Learning from “Coffee Rings”: ordered structures enabled by controlled evaporative self-assembly. Angew. Chem. Int. Ed. 51, 1534–1546 (2012)

    Google Scholar 

  102. Myunghwan, B., Jun, W., Zhiqun, L.: Massively ordered microstructures composed of magnetic nanoparticles. J. Phys. Condens. Matter 21, 264014 (2009)

    Google Scholar 

  103. Kim, T.Y., Kwon, S.W., Park, S.J., Yoon, D.H., Suh, K.S., Yang, W.S.: Self-organized graphene patterns. Adv. Mater. 23, 2734–2738 (2011)

    Google Scholar 

  104. Byun, M., Laskowski, R.L., He, M., Qiu, F., Jeffries-El, M., Lin, Z.: Controlled evaporative self-assembly of hierarchically structured regioregular conjugated polymers. Soft Matter 5, 1583–1586 (2009)

    Google Scholar 

  105. Schwartz, B.J.: Conjugated polymers as molecular materials: how chain conformation and film morphology influence energy transfer and interchain interactions. Annu. Rev. Phys. Chem. 54, 141–172 (2003)

    Google Scholar 

  106. Berenbaum, A., Ginzburg-Margau, M., Coombs, N., Lough, A.J., Safa-Sefat, A., Greedan, J.E., Ozin, G.A., Manners, I.: Ceramics containing magnetic Co–Fe alloy nanoparticles from the pyrolysis of a highly metallized organometallic polymer precursor. Adv. Mater. 15, 51–55 (2003)

    Google Scholar 

  107. Clendenning, S.B., Aouba, S., Rayat, M.S., Grozea, D., Sorge, J.B., Brodersen, P.M., Sodhi, R.N.S., Lu, Z.H., Yip, C.M., Freeman, M.R., Ruda, H.E., Manners, I.: Direct writing of patterned ceramics using electron-beam lithography and metallopolymer resists. Adv. Mater. 16, 215–219 (2004)

    Google Scholar 

  108. Clendenning, S.B., Fournier-Bidoz, S., Pietrangelo, A., Yang, G., Han, S., Brodersen, P.M., Yip, C.M., Lu, Z.-H., Ozin, G.A., Manners, I.: Ordered 2D arrays of ferromagnetic Fe/Co nanoparticle rings from a highly metallized metallopolymer precursor. J. Mater. Chem. 14, 1686–1690 (2004)

    Google Scholar 

  109. MacLachlan, M.J., Ginzburg, M., Coombs, N., Coyle, T.W., Raju, N.P., Greedan, J.E., Ozin, G.A., Manners, I.: Shaped ceramics with tunable magnetic properties from metal-containing polymers. Science 287, 1460–1463 (2000)

    Google Scholar 

  110. Paquet, C., Cyr, P.W., Kumacheva, E., Manners, I.: Polyferrocenes: metallopolymers with tunable and high refractive indices. Chem. Commun. 234–235 (2004)

    Google Scholar 

  111. Whittell, G.R., Manners, I.: Metallopolymers: new multifunctional materials. Adv. Mater. 19, 3439–3468 (2007)

    Google Scholar 

  112. Manners, I.: Poly(ferrocenylsilanes): novel organometallic plastics. Chem. Commun. 857–865 (1999)

    Google Scholar 

  113. Ginzburg, M., MacLachlan, M.J., Yang, S.M., Coombs, N., Coyle, T.W., Raju, N.P., Greedan, J.E., Herber, R.H., Ozin, G.A., Manners, I.: Genesis of nanostructured, magnetically tunable ceramics from the pyrolysis of cross-linked polyferrocenylsilane networks and formation of shaped macroscopic objects and micron scale patterns by micromolding inside silicon wafers. J. Am. Chem. Soc. 124, 2625–2639 (2002)

    Google Scholar 

  114. Leutwyler, W.K., Bürgi, S.L., Burgl, H.: Semiconductor clusters, nanocrystals, and quantum dots. Science 271, 933–937 (1996)

    Google Scholar 

  115. Peng, X., Schlamp, M.C., Kadavanich, A.V., Alivisatos, A.P.: Epitaxial growth of highly luminescent CdSe/CdS Core/Shell nanocrystals with photostability and electronic accessibility. J. Am. Chem. Soc. 119, 7019–7029 (1997)

    Google Scholar 

  116. Murray, C.B., Norris, D.J., Bawendi, M.G.: Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 115, 8706–8715 (1993)

    Google Scholar 

  117. Coe, S., Woo, W.-K., Bawendi, M., Bulovic, V.: Electroluminescence from single monolayers of nanocrystals in molecular organic devices. Nature 420, 800–803 (2002)

    Google Scholar 

  118. Colvin, V., Schlamp, M., Alivisatos, A.: Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer. Nature 370, 354–357 (1994)

    Google Scholar 

  119. Dabbousi, B.O., Bawendi, M.G., Onitsuka, O., Rubner, M.F.: Electroluminescence from CdSe quantum – dot/polymer composites. Appl. Phys. Lett. 66, 1316–1318 (1995)

    Google Scholar 

  120. Gao, M., Richter, B., Kirstein, S.: White-light electroluminescence from self-assembled Q-CdSe/PPV multilayer structures. Adv. Mater. 9, 802–805 (1997)

    Google Scholar 

  121. Greenham, N.C., Peng, X., Alivisatos, A.P.: Charge separation and transport in conjugated-polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Phys. Rev. B 54, 17628–17637 (1996)

    Google Scholar 

  122. Huynh, W.U., Dittmer, J.J., Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425–2427 (2002)

    Google Scholar 

  123. Milliron, D.J., Gur, I., Alivisatos, A.P.: Hybrid organic–nanocrystal solar cells. MRS. Bull. 30, 41–44 (2005)

    Google Scholar 

  124. Chan, W.C.W., Nie, S.: Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281, 2016–2018 (1998)

    Google Scholar 

  125. Ishii, D., Kinbara, K., Ishida, Y., Ishii, N., Okochi, M., Yohda, M., Aida, T.: Chaperonin-mediated stabilization and ATP-triggered release of semiconductor nanoparticles. Nature 423, 628–632 (2003)

    Google Scholar 

  126. Mattoussi, H., Mauro, J.M., Goldman, E.R., Anderson, G.P., Sundar, V.C., Mikulec, F.V., Bawendi, M.G.: Self-assembly of CdSe–ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122, 12142–12150 (2000)

    Google Scholar 

  127. Medintz, I.L., Uyeda, H.T., Goldman, E.R., Mattoussi, H.: Quantum dot bioconjugates for imaging, labelling and sensing. Nat. Mater. 4, 435–446 (2005)

    Google Scholar 

  128. Alivisatos, P.: The use of nanocrystals in biological detection. Nat Biotechnol 22, 47–52 (2004)

    Google Scholar 

  129. Larson, D.R., Zipfel, W.R., Williams, R.M., Clark, S.W., Bruchez, M.P., Wise, F.W., Webb, W.W.: Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003)

    Google Scholar 

  130. Santra, S., Yang, H., Holloway, P.H., Stanley, J.T., Mericle, R.A.: Synthesis of water-dispersible fluorescent, radio-opaque, and paramagnetic CdS:Mn/ZnS quantum dots: a multifunctional probe for bioimaging. J. Am. Chem. Soc. 127, 1656–1657 (2005)

    Google Scholar 

  131. Dabbousi, B.O., Rodriguez-Viejo, J., Mikulec, F.V., Heine, J.R., Mattoussi, H., Ober, R., Jensen, K.F., Bawendi, M.G.: (CdSe)ZnS core−shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B 101, 9463–9475 (1997)

    Google Scholar 

  132. Hines, M.A., Guyot-Sionnest, P.: Synthesis and characterization of strongly luminescing ZnS-Capped CdSe nanocrystals. J. Phys. Chem. 100, 468–471 (1996)

    Google Scholar 

  133. Kortan, A.R., Hull, R., Opila, R.L., Bawendi, M.G., Steigerwald, M.L., Carroll, P.J., Brus, L.E.: Nucleation and growth of cadmium selendie on zinc sulfide quantum crystallite seeds, and vice versa, in inverse micelle media. J. Am. Chem. Soc. 112, 1327–1332 (1990)

    Google Scholar 

  134. Leizerson, I., Lipson, S.G., Lyushnin, A.V.: Finger Instability in wetting–dewetting phenomena. Langmuir 20, 291–294 (2003)

    Google Scholar 

  135. Lyushnin, A.V., Golovin, A.A., Pismen, L.M.: Fingering instability of thin evaporating liquid films. Phys. Rev. E 65, 021602 (2002)

    Google Scholar 

  136. Cazabat, A., Heslot, F., Troian, S., Carles, P.: Fingering instability of thin spreading films driven by temperature gradients. Nature 346, 824–826 (1990)

    Google Scholar 

  137. Byun, M., Han, W., Li, B., Xin, X., Lin, Z.: An unconventional route to hierarchically ordered block copolymers on a gradient patterned surface through controlled evaporative self-assembly. Angew. Chem. Int. Ed. 52, 1122–1127 (2013)

    Google Scholar 

  138. Han, W., He, M., Byun, M., Li, B., Lin, Z.: Large-scale hierarchically structured conjugated polymer assemblies with enhanced electrical conductivity. Angew. Chem. Int. Ed. 52, 2564–2568 (2013)

    Google Scholar 

  139. Han, W., Byun, M., Li, B., Pang, X., Lin, Z.: A simple route to hierarchically assembled micelles and inorganic nanoparticles. Angew. Chem. Int. Ed. 124, 12756–12760 (2012)

    Google Scholar 

  140. Li, B., Han, W., Byun, M., Zhu, L., Zou, Q., Lin, Z.: Macroscopic highly aligned DNA nanowires created by controlled evaporative self-assembly. ACS Nano 7, 4326–4333 (2013)

    Google Scholar 

  141. Carvalho, M.S., Kheshgi, H.S.: Low-flow limit in slot coating: theory and experiments. AIChE J. 46, 1907–1917 (2000)

    Google Scholar 

  142. Higgins, B.G., Scriven, L.E.: Capillary pressure and viscous pressure drop set bounds on coating bead operability. Chem. Eng. Sci. 35, 673–682 (1980)

    Google Scholar 

  143. Ruschak, K.J.: Limiting flow in a pre-metered coating device. Chem. Eng. Sci. 31, 1057–1060 (1976)

    Google Scholar 

  144. Lee, K.-Y., Liu, L.-D., Ta-Jo, L.: Minimum wet thickness in extrusion slot coating. Chem. Eng. Sci. 47, 1703–1713 (1992)

    Google Scholar 

  145. Sartor, L.: Slot Coating: Fluid Mechanics and Die Design. University of Minnesota, Minneapolis, MN (1990)

    Google Scholar 

  146. Fasolka, M., Stafford, C., Beers, K.: Gradient and microfluidic library approaches to polymer interfaces. Adv Polym Sci 225, 63–105 (2010)

    Google Scholar 

  147. Stafford, C.M., Roskov, K.E., Epps, T.H., Fasolka, M.J.: Generating thickness gradients of thin polymer films via flow coating. Rev. Sci. Instrum. 77, 023908-7 (2006)

    Google Scholar 

  148. Meredith, J.C., Karim, A., Amis, E.J.: High-throughput measurement of polymer blend phase behavior. Macromolecules 33, 5760–5762 (2000)

    Google Scholar 

  149. Carson Meredith, J., Karim, A., Amis, E.J.: Combinatorial methods for investigations in polymer materials science. MRS Bull 27, 330–335 (2002)

    Google Scholar 

  150. Tsuruma, A., Tanaka, M., Yamamoto, S., Fukushima, N., Yabu, H., Shimomura, M.: Topographical control of neurite extension on stripe-patterned polymer films. Colloid Surf. A 284–285, 470–474 (2006)

    Google Scholar 

  151. Yabu, H., Inoue, K., Shimomura, M.: Multiple-periodic structures of self-organized honeycomb-patterned films and polymer nanoparticles hybrids. Colloid Surf. A 284–285, 301–304 (2006)

    Google Scholar 

  152. Kim, B.H., Shin, D.O., Jeong, S.-J., Koo, C.M., Jeon, S.C., Hwang, W.J., Lee, S., Lee, M.G., Kim, S.O.: Hierarchical self-assembly of block copolymers for lithography-free nanopatterning. Adv. Mater. 20, 2303–2307 (2008)

    Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge funding support from NSF (CBET-1332780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqun Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Li, B., Iocozzia, J., Lin, Z. (2015). Directing Convection to Pattern Thin Polymer Films: Coffee Rings. In: Rodríguez-Hernández, J., Drummond, C. (eds) Polymer Surfaces in Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-17431-0_3

Download citation

Publish with us

Policies and ethics