Skip to main content

Nanobubble-Assisted Nanopatterning

  • Chapter
Polymer Surfaces in Motion
  • 904 Accesses

Abstract

In the previous chapter it was described how degassing aqueous solutions in contact with hydrophobic polymers open pathways for polymer surface patterning. In the absence of degassing, nanobubbles can nucleate on hydrophobic surfaces. In this chapter the structuring effect of nanobubbles on hydrophobic surfaces is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Parker, J.L., Claesson, P.M., Attard, P.: Bubbles, cavities, and the long-ranged attraction between hydrophobic surfaces. J. Phys. Chem. 98, 8468 (1994)

    Article  Google Scholar 

  2. Tyrrell, J.W., Attard, P.: Images of nanobubbles on hydrophobic surfaces and their interactions. Phys. Rev. Lett. 87, 176104 (2001)

    Article  Google Scholar 

  3. Joost, H., Weijs, D.L.: Why surface nanobubbles live for hours. Phys. Rev. Lett. 110, 054501 (2013)

    Article  Google Scholar 

  4. Chan, C.U., Ohl, C.D.: TIRF microscopy for the study of nanobubble dynamics. Phys. Rev. Lett. 109, 174501 (2012)

    Article  Google Scholar 

  5. Karpitschka, S., Dietrich, E., Seddon, J.R.T., Zandvliet, H.J.W., Lohse, D., Riegler, H.: Nonintrusive optical visualization of surface nanobubbles. Phys. Rev. Lett. 109, 066102 (2012)

    Article  Google Scholar 

  6. Zhihua, W., Zhang, X., Zhang, X., Li, G., Sun, J., Zhang, Y., Li, M., Jun, H.: Nanobubbles influence on BSA adsorption on mica surface. Surf. Interface Anal. 38, 990–995 (2006)

    Article  Google Scholar 

  7. Wu, Z., Chen, H., Dong, Y., Mao, H., Sun, J., Chen, S., Craig, V.S.J., Hu, J.: Cleaning using nanobubbles: defouling by electrochemical generation of bubbles. J.Colloid.Interface.Sci 328, 10–14 (2008)

    Article  Google Scholar 

  8. Kolivoška, V., Gál, M., Hromadova, M., Lachmanová, Š., Tarábková, H., Janda, P., Pospíšil, L., Turoňová, A.M.: Bovine serum albumin film as a template for controlled nanopancake and nanobubble formation: In situ atomic force microscopy and nanolithography study. Colloids Surf. B: Biointerfaces 94, 213–219 (2012)

    Article  Google Scholar 

  9. Wang, Y., Bhushan, B., Zhao, X.: Nanoindents produced by nanobubbles on ultrathin polystyrene (PS) film in water. Nanotechnology 20, 045301 (2009)

    Article  Google Scholar 

  10. Jing, B., Zhao, J., Wang, Y., Yi, X., Duan, H.: Water-swelling-induced morphological instability of a supported polymethyl methacrylate thin film. Langmuir 26, 7651–7655 (2010)

    Article  Google Scholar 

  11. Tanaka, K., Fujii, Y., Atarashi, H., Akabori, K.-i., Hino, M., Nagamura, T.: Nonsolvents cause swelling at the interface with poly(methylmethacrylate) films. Langmuir 24, 296–301 (2008)

    Article  Google Scholar 

  12. Janda, P., Frank, O., Bastl, Z., Klementová, M., Tarábková, H., Kavan, L.: Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media. Nanotechnology 21, 095707 (2010)

    Article  Google Scholar 

  13. Siretanu, I., Chapel, J.P., Drummond, C.: Nanostructuration of hydrophobic polymer surfaces. ACS Nano 5, 2939–2947 (2011)

    Article  Google Scholar 

  14. Yang, S., Duisterwinkel, A.: Removal of nanoparticles from plain and patterned surfaces using nanobubbles. Langmuir 27, 11430–11435 (2011)

    Article  Google Scholar 

  15. Tarábková, H., Janda, P.: Nanobubble assisted nanopatterning utilized for ex situ identification of surface nanobubbles. J. Phys. Condens. Matter 25, 184001 (2013)

    Article  Google Scholar 

  16. Tarábková, H., Bastl, Z., Janda, P.: Surface rearrangement of water-immersed hydrophobic solids by gaseous nanobubbles. Langmuir 30, 14522–14531 (2014)

    Article  Google Scholar 

  17. Liu, Y., Zhang, X.: Nanobubble stability induced by contact line pinning. J. Chem. Phys. 138, 014706 (2013)

    Article  Google Scholar 

  18. Das, S., Marchand, A., Andreotti, B., Snoeijer, J.H.: Elastic deformation due to tangential capillary forces. Phys. Fluids 23, 072006 (2011)

    Article  Google Scholar 

  19. Marchand, A., Weijs, J.H., Snoeijer, J.H., Andreotti, B.: Why is surface tension a force parallel to the interface? Am. J. Phys. 79, 999 (2011)

    Article  Google Scholar 

  20. Bari, S.D., Robinson, A.J.: Experimental study of gas injected bubble growth from submerged orifices. Exp. Therm. Fluid. Sci 44, 124 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Janda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Janda, P. (2015). Nanobubble-Assisted Nanopatterning. In: Rodríguez-Hernández, J., Drummond, C. (eds) Polymer Surfaces in Motion. Springer, Cham. https://doi.org/10.1007/978-3-319-17431-0_12

Download citation

Publish with us

Policies and ethics