Skip to main content

ProMine Mineral Databases: New Tools to Assess Primary and Secondary Mineral Resources in Europe

  • Chapter
  • First Online:

Part of the book series: Mineral Resource Reviews ((MIRERE))

Abstract

A major objective of the ProMine project was to develop a Pan-EU GIS data management and visualization system for natural and man-made mineral endowment and the implementation of a Pan-EU predictive resource assessment, and thus to provide a renewed picture of European metallogeny. To reach this objective, ProMine work package 1 produced pan-European databases of primary and secondary mineral resources, the ProMine Mineral Deposit (MD) and Anthropogenic Concentration (AC) databases. The present version of the MD database contains 12,979 records (mines, deposits, occurrences or showings) and covers 34 European countries. The total number of records of the AC database is 3408. As an exhaustive inventory of mineral wastes in Europe was far beyond the scope of the project, ProMine focused on major anthropogenic concentrations (i.e. mining and ore processing wastes) and on the most interesting in terms of volume/tonnage and content (e.g. possible presence of critical metals). After briefly presenting the databases—their structure, the way they were fed and their content—the present chapter focuses on how they can allow (i) geological approaches such as the spatial and temporal distributions of commodities and/or deposit types (and, in turn, the identification of metallogenic epochs), as well as (ii) statistics calculation on the main commodities and metallogenic types present in Europe and their contribution to the EU mineral budget. In addition, it is shown that the thorough and homogeneous data contained in the MD database also allows calculation of mineral potential and predictive maps at European scale. Given the limited number of parameters—present in an homogeneous way—which can be used when working at continental scale, different methods of calculation have been adapted: for the calculation of potential, kernel density and weighting have been used, and for predictivity mapping, besides the use of the well-known Weight-of-Evidence (based on lithostratigraphy) for main commodities present in an ore deposit, a new method using metals associations has been set up for by-product commodities in formerly known deposits. Working at European scale, one should however keep in mind that such studies cannot be used for targeting. The aim is more realistically to precise or to redefine ‘district’ contours and in the best case to enhance ‘some less obvious’ areas. In order to display and to deliver data through the Internet, a web portal was developed. The ProMine web portal architecture is based, especially for metadata and web services, on OGC [Open Geospatial Consortium (http://www.opengeospatial.org/)] principles related to open architecture and interoperability. A mapping between the data stored in the ProMine databases and standard data models like GeoSciML for geological information and EarthResourceML for mineral deposits, mines and mining wastes has been implemented to deliver the data according to these international standards.

Gabor Gaál: Deceased.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    High-tech metals are engaged in the major theme sets of “climatic change”, at the level of “renewable energies” and reducing emission of “greenhouse gases”. The CO2 battle is involving a growing number of these “minor” (often by-products) metals which, in this case, can be qualified as ecological “green metals”.

  2. 2.

    Tonnage of commodity (metric tons of metal) in the ore body, based on its grade and the tonnage of ore.

  3. 3.

    IndexMundi is a platform containing various data concerning selected attributes and characteristics of countries, including detailed statistics on commodities compiled from multiple sources (http://www.indexmundi.com/en/commodities/minerals/).

  4. 4.

    Tonnage of commodity (metric tons of metal) in the anthropogenic concentration, based on its grade and the tonnage of waste.

  5. 5.

    Kernel density is a method to calculate the density of point (or line) features (deposits in our case) per unit area using a kernel function to fit a smoothly tapered surface to each point (or line).

  6. 6.

    Directive 2007/2/EC of the European Parliament and of the Council of 14 March 2007 establishing an Infrastructure for Spatial Information in the European Community (INSPIRE) http://inspire.jrc.ec.europa.eu.

References

  • Anderson I.K., Ashton J.H., Boyce A.J., Fallick A.E., Russell M.J. (1998). Ore Depositional processes in the Navan Zn–Pb deposit, Ireland. Economic Geology, 93, 535–563.

    Google Scholar 

  • Arribas A., Cunningham C.G., Rytuba J.J., Rye R.O., Kelly W.C., Podwysocki M.H., McKee E.H., Tosdal R.M., (1995). Geology, geochronology, fluid inclusions, and isotope geochemistry of the Rodalquilar gold alunite deposit, Spain. Economic Geology, 90, p. 795-822

    Google Scholar 

  • Arvanitidis N.D., Michael C., Christidis C., Cassard D., Perantonis G., Bertrand G., Kaja J., Ballas D. and Bakalis V. (2012). GIS-Based datasets of mineral deposits and man-made resources as valuable exploration tools for discovering potential ore deposits in Greece. 7th EUROGEO, Bologna, June 12th-15th 2012, Proceedings, 551-552.

    Google Scholar 

  • Ashton J. (2005). The Navan carbonate-hosted Zn–Pb deposit, Ireland: Lat. 53°39′ N, Long. 6°41′ W. In: Special Issue on Geodynamics and Ore Deposit Evolution in Europe (D. Blundell, N. Arndt, P.R. Cobbold and C. Heinrich Eds.). Ore Geology Reviews, 27, 270.

    Google Scholar 

  • Audion A.S., Piantone P. (2012). Panorama 2011 du marché du tantale. Final report. BRGM/RP-61343-FR, pp. 91. http://www.mineralinfo.fr/panoramas.html.

  • Autran A., Derré C., Fonteilles M., Guy B., Soler P., Toulhoat P. (1980). Genèse des skarns à tungstène dans les Pyrénées. In Johan Z. (Coordinator), Minéralisations liées aux granitoïdes. Mémoire du BRGM, 99, 193-319.

    Google Scholar 

  • Bailly L., Bouchot V., Bény C., Milesi J.-P. (2000). Fluid inclusion study of stibnite using infrared microscopy: an example from the Brouzils antimony deposit (Vendée, Armorican Massif, France). Economic Geology, 95 (1), 221-226.

    Google Scholar 

  • Barbieri M., Masi U., Tolomeo L. (1977). Geochemical evidence on the origin of the epithermal fluorite deposit at Monte Delle Fate near Cerveteri (Latium, Central Italy). Mineralium Deposita, 12, 393-398.

    Google Scholar 

  • Bierlein F.P., Murphy F.C., Weinberg R.F., Lees T. (2006). Distribution of orogenic gold deposits in relation to fault zones and gravity gradients: targeting tools applied to the Eastern Goldfields, Yilgarn Craton, Western Australia. Mineralium Deposita, 41, 107-126.

    Google Scholar 

  • Billa M., Cassard D., Lips A.L.W., Bouchot V., Tourlière B., Stein G. and Guillou-Frottier L. (2004). Predicting gold-rich epithermal and porphyry systems in the central Andes with a continental-scale metallogenic GIS. Ore Geology Reviews, 25, 39-67.

    Google Scholar 

  • Bonham-Carter G.F. (1994). Geographic information systems for geoscientists. Modelling with GIS Computer Methods in the Geosciences, vol. 13. Pergamon, New York, 398 pp.

    Google Scholar 

  • Bonham-Carter G.F., Agterberg F.P., Wright D.F. (1989). Weights of evidence modeling: a new approach to mapping mineral potential. In: Agterberg F.P., Bonham-Carter G.F. (Eds.), Statistical Applications in Earth Sciences, Geological Survey of Canada, 89 (9), 171-183.

    Google Scholar 

  • Bouchot V., Ledru P., Lerouge C., Lescuyer J.-L., Milesi J.-P. (2005). Late Variscan mineralizing systems related to orogenic processes: The French Massif Central. In: Special Issue on Geodynamics and Ore Deposit Evolution in Europe (D. Blundell, N. Arndt, P.R. Cobbold and C. Heinrich Eds.). Ore Geology Reviews, 27, 169–197.

    Google Scholar 

  • Bouchot V., Milesi J.-P., Ledru P. (2000). Crustal-scale hydrothermal palaeofield and related Au, Sb, W orogenic deposits at 310–305 Ma (French Massif Central, Variscan Belt). SGA News, 10, 6–12.

    Google Scholar 

  • Bouchot V., Milesi J.-P., Lescuyer J.-L., Ledru P. (1997). Les minéralisations aurifères de la France dans leur cadre géologique autour de 300 Ma. Chronique de la Recherche Minière, 528, 13– 62.

    Google Scholar 

  • Bougrain L., Gonzalez M., Bouchot V., Cassard D., Lips A.L.W., Alexandre F., Stein G. (2003). Knowledge recovery for continental-scale mineral exploration by neural networks. Natural Resources Research, 12 (3), 173-181.

    Google Scholar 

  • Bril H. (1982). Fluid inclusions study of Sn–W–Au, Sb– and Pb–Zn mineralizations from the Brioude-Massiac district (French Massif Central). Mineralogy and Petrology, 30, 1-16.

    Google Scholar 

  • Carranza E.J.M. (2009a). Controls on mineral deposit occurrence inferred from analysis of their spatial pattern and spatial association with geological features. Ore Geology Reviews, 35, 383–400.

    Google Scholar 

  • Carranza E.J.M. (2009b). Geochemical anomaly and mineral prospectivity mapping in GIS. Handbook of Exploration and Environmental Geochemistry, Vol. 11, M. Hale (Series Editor), Elsevier, 351 pp.

    Google Scholar 

  • Carranza E.J.M. (2011). Geocomputation of mineral exploration targets. Computers & Geosciences 37, 1907–1916.

    Google Scholar 

  • Cassard D., Bertrand G., Maldan F., Gaàl G., Juha K., Aatos S., Angel J.M., Arvanitidis N., Ballas D., Billa M., Christidis C., Dimitrova D., Eilu P., Filipe A., Grazea E., Inverno C., Kauniskangas E., Maki T., Matos J., Meliani M., Michael C., Mladenova V., Navas J., Niedbal M., Perantonis G., Pyra J., Santana H., Serafimovski T., Serrano J.J., Strengel J., Tasev G., Tornos F., Tudor G. (2012). ProMine pan-European Mineral Deposit database: a new dataset for assessing primary mineral resources in Europe. Mineral Resources Potential Maps : a Tool for Discovering Future Deposits. 12th-14th March 2012, Nancy, France

    Google Scholar 

  • Cassard D., Billa M., Lambert A., Picot J.-C., Husson Y., Lasserre J.-L., Delor C. (2008). Gold predictivity mapping in French Guiana using an expert-guided data-driven approach based on a regional-scale GIS. Ore Geology Reviews, 34, 471-500.

    Google Scholar 

  • Cassard D., Lambert A. (2007). Le SIG Mines France : http://sigminesfrance.brgm.fr/

  • Cassard D., Lips A.L.W., Leistel J.-M., Itard Y., Debeglia-Marchand N., Guillou-Frottier L., Spakman W., Stein G., Husson Y. (2004). Understanding and assessing European mineral resources – a new approach using GIS Central Europe. Schweizerische Mineralogische und Petrographische Mitteilungen, 84, 3-24.

    Google Scholar 

  • Černý P., Ercit T.S. (2005). Classification of granitic pegmatites. Canadian Mineralogist, 43, 2005–2026.

    Google Scholar 

  • Cooke D.R., Hollings P., Walshe J.L. (2005). Giant porphyry deposits: characteristics, distribution and tectonic controls. Economic Geology, 100, 801-818.

    Google Scholar 

  • Cuney M., Marignac C., Weisbrod A. (1992). The Beauvoir Topaze-Lepidolite Albite granite (Massif-Central, France): the disseminated magmatic Sn-Li-Ta-Nb-Be mineralization. Economic Geology, 87, 1766-1794.

    Google Scholar 

  • Derre C. (1982). Caractéristiques de la distribution des gisements d’étain et de tungstène dans l’Ouest de l’Europe. Mineralium Deposita, 17, 55 – 77.

    Google Scholar 

  • Eilu P., Weihed P. (2005). Fennoscandian Shield – Orogenic gold deposits, Ore Geology Reviews, 27, 326-327.

    Google Scholar 

  • Eilu, P., Ahtola, T., Äikäs, O., Halkoaho, T., Heikura, P., Hulkki, H., Iljina, M., Juopperi, H., Karinen, T., Kärkkäinen, N., Konnunaho, J., Kontinen, A., Kontoniemi, O., Korkiakoski, E., Korsakova, M., Kuivasaari, T., Kyläkoski, M., Makkonen, H., Niiranen, T., Nikander, J., Nykänen, V., Perdahl, J.-A., Pohjolainen, E., Räsänen, J., Sorjonen-Ward, P., Tiainen, M., Tontti, M., Torppa, A. & Västi, K. 2012. Metallogenic areas in Finland. In Mineral deposits and metallogeny of Fennoscandia (P. Eilu Ed.), Geological Survey of Finland, Special Paper 53, 207–342.

    Google Scholar 

  • Eilu P., Sorjonen-Ward P., Nurmi P., Niiranen T. (2003). A review of gold mineralization styles in Finland. Economic Geology, 98, 1329-1353.

    Google Scholar 

  • Einaudi M.T., Meinert L.D., Newberry R.J. (1981). Skarn Deposits. In: B.J. Skinner (Ed.) Seventy-fifth Anniversary Volume, 1906-1980, Economic Geology, 317-391.

    Google Scholar 

  • European Commission (2010). Critical raw materials for the EU, Report of the ad-hoc working group on defining critical raw materials. European Commission, Raw Materials Supply Group, 30 July 2010, 85 pp.

    Google Scholar 

  • European Commission (2011). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions – Tackling the challenges in commodity markets and on raw material. COM(2011) 25 final.

    Google Scholar 

  • European Parliament (2006). DIRECTIVE 2006/12/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 5 April 2006 on waste (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2006:114:0009:0021:en:PDF)

  • European Parliament (2008). DIRECTIVE 2008/98/EC OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 19 November 2008 on waste and repealing certain Directives. (http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=OJ:L:2008:312:0003:0030:en:PDF)

  • Franke W., Matte P., Tait J. (2005). Europe: Variscan orogeny. Encyclopedia of Geology, vol. 2, Elsevier, Oxford, 75–85.

    Google Scholar 

  • Gaál G., Cassard D., Bertrand G., Schaeben H., Royer J.J., Weihed P., Skyttä P. and Bauer T. (2012). Pan European Mineral Resource Assessment: The ProMine Project’, 34th Session of the International Geological Congress (IGC). Brisbane, Australia, 5-10 August. Abstract on CD-ROM.

    Google Scholar 

  • Goldfarb R.J., Groves D.I., Gardoll S. (2001). Orogenic gold and geologic time: A global synthesis. Ore Geology Reviews, 18, 1-75.

    Google Scholar 

  • Grenne T., Ihlen P.M., Vokes F.M. (1999). Scandinavian Caledonide metallogeny in a plate tectonic perspective. Mineralium Deposita, 34, 422–471.

    Google Scholar 

  • Groves D.I., Goldfarb R.J., Gebre-Mariam M., Hagemann S.G., Robert F. (1998). Orogenic gold deposits: A proposed classification in the context of their crustal distribution and relationship to other gold deposit types. Ore Geology Reviews, 13, 7-27.

    Google Scholar 

  • Hallberg A., Bergman T., Gonzalez J., Larsson D., Morris G. A., Perdahl J. A., Ripa M., Niiranen T., Eilu P. (2012). Metallogenic areas in Sweden. In Mineral deposits and metallogeny of Fennoscandia (P. Eilu Ed.), Geological Survey of Finland, Special Paper 53, 139–206.

    Google Scholar 

  • Heinrich C. A., Neubauer F. (2002). Cu–Au–Pb–Zn–Ag metallogeny of the Alpine–Balkan– Carpathian– Dinaride geodynamic province. Mineralium Deposita, 37, 533–540.

    Google Scholar 

  • Higueras P., Munha J., Oyarzun R., Tassinari C.G., Ruiz I.R. (2005). First lead isotopic data for cinnabar in the Almadén district (Spain): implications for the genesis of the mercury deposits. Mineralium Deposita, 40, 115–122.

    Google Scholar 

  • Hitzman M.W., Selley D., Bull S. (2010). Formation of sedimentary rock-Hosted stratiform copper deposits through Earth history. Economic Geology, 105, 627–639.

    Google Scholar 

  • Hocquard C., Deschamps Y. (2008). Strategic metals, high-tech metals, environmentally “green metals”: a convergence. IGC 33rd, Oslo, August 6-14, 2008. Abstracts on CD-ROM.

    Google Scholar 

  • Höll R., Kling M., Schroll E. (2007). Metallogenesis of germanium - A review. Ore Geology Reviews, 30, 145–180.

    Google Scholar 

  • Jankovic S. (1997). The Carpatho–Balkanides and adjacent area: a sector of the Tethyan Eurasian metallogenic belt. Mineralium Deposita, 32, 426– 433.

    Google Scholar 

  • Jebrak M., Higueras P., Marcoux E., Lorenzo S. (2002). Geology and geochemistry of high-grade, volcanic rock-hosted, mercury mineralization in the Nuevo Entredicho deposit, Almaden, Spain. Mineralium Deposita, 37, 421–432.

    Google Scholar 

  • Jowitt S. M. (2008). Field, petrological and geochemical constraints on the release of base metals into hydrothermal fluids in Cyprus-type Volcanogenic Massive Sulphide (VMS) systems: an investigation of the Spilia-Kannavia epidosite zone, Troodos ophiolite, Cyprus. PhD Thesis, University of Leicester, 268 pp.

    Google Scholar 

  • Kärkkäinen N., Appelqvist H. (1999). Genesis of a low-grade apatite -ilmenite-magnetite deposit in the Kauhajärvi gabbro, western Finland. Mineralium deposita, 34, 754-769.

    Google Scholar 

  • Kemp L.D., Bonham-Carter G.F., Raines G.L., Looney, C.G. (2001). Arc-SDM: Arcview extension for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural network analysis. http://www.ige.unicamp.br/sdm/

  • Knox-Robinson C.M., Groves D.I. (1997). Gold prospectivity mapping using a Geographic Information System (GIS) with examples from the Yilgarn Block of Western Australia. Chronique de la Recherche Minière 529, 127-138.

    Google Scholar 

  • Kreuzer O.P., Markwitz V., Porwal A.K., McCuaig T.C. (2010). A continent-wide study of Australia’s uranium potential. Part I: GIS-assisted manual prospectivity analysis. Ore Geology Reviews, 38, 334–366.

    Google Scholar 

  • Large D., Walcher E. (1999). The Rammelsberg massive sulphide Cu–Zn–Pb–Ba–Deposit, Germany: an example of sediment-hosted, massive sulphide mineralisation. Mineralium Deposita, 34, 522–538.

    Google Scholar 

  • Ledru P., Costa S., Echtler H. (1994). Structure. In: Keppie, J.D. (Ed.) Pre-Mesozoic geology in France and related areas. Part III, The Massif Central, Springer-Verlag, Berlin, 305-323.

    Google Scholar 

  • Leistel J.M., Marcoux E., Thieblemont D., Quesada C., Sánchez A., Almodóvar G.R., Pascual E., Sáez R. (1998). The volcanic-hosted massive sulphide deposits of the Iberian Pyrite Belt. Review and preface to the special issue. Mineralium Deposita, 33, 2–30.

    Google Scholar 

  • Lerouge C., Bouchot V. (2005). Châtaigneraie–example of a late Variscan tungsten district: Southern French Massif Central: Lat. 44°40′ N, Long. 2°35′ E. In: Special Issue on Geodynamics and Ore Deposit Evolution in Europe (D. Blundell, N. Arndt, P.R. Cobbold and C. Heinrich Eds.). Ore Geology Reviews, 27, 200-201.

    Google Scholar 

  • Lescuyer J.L., Bouchot V., Cassard D., Feybesse J.L., Marcoux E., Moine B., Piantone P., Tegyey M., Tollon F. (1993). Le gisement aurifère de Salsigne (Aude, France): une concentration syntectonique tardivarisque dans les sédiments détritiques et carbonatés de la Montagne-Noire. Chronique de la Recherche Minière, 512, 3–73.

    Google Scholar 

  • Lips A.W., Herrington R.J., Stein G., Kozelj D., Popov K., Wijbrans J.R. (2004). Refined timing of porphyry copper formation in the Serbian and Bulgarian portions of the Cretaceous Carpatho–Balkan Belt. Economic Geology, 99, 601–609.

    Google Scholar 

  • Marignac C., Cuney M. (1999). Ore deposits of the French Massif Central: insight into the metallogenesis of the Variscan collision belt. Mineralium Deposita, 34, 472-504.

    Google Scholar 

  • Martínez C., Tornos F., Casquet C., Galindo C. (2005). The Aguablanca Ni–(Cu–PGE) deposit, SW Spain, Ossa Morena Zone. Ore Geology Reviews, 27, 164–165.

    Google Scholar 

  • Matte P. (1994). Accretionary history and crustal evolution of the Variscan belt in Western Europe. Tectonophysics, 10, 309–337.

    Google Scholar 

  • Moon C.J. (2010). Geochemical exploration in Cornwall and Devon: a review. Geochemistry: Exploration, Environment, Analysis, 10, 331-351. AAG/Geological Society of London Ed.

    Google Scholar 

  • Morgan J.W., Stein H.J., Hannah J.L., Markey R.J., Wiszniewska J. (2000). Re-Os study of Fe-Ti-V oxide and Fe-Cu-Ni sulphide deposits, Suwalki Anorthosite Massif, northeast Poland. Mineralium Deposita, 35, 391-401.

    Google Scholar 

  • Muchez P., Heijlen W., Banks D., Blundell D., Boni M., Grandia F. (2005). Extensional tectonics and the timing and formation of basin-hosted deposits in Europe. Ore Geology Reviews, 27, 241–267.

    Google Scholar 

  • Neubauer F., Lips A., Kouzmanov K., Lexa J., Ivăşcanu P. (2005). Subduction, slab detachment and mineralization: The Neogene in the Apuseni Mountains and Carpathians. In: Special Issue on Geodynamics and Ore Deposit Evolution in Europe (D. Blundell, N. Arndt, P.R. Cobbold and C. Heinrich Eds.). Ore Geology Reviews, 27, 13–44.

    Google Scholar 

  • Noronha E., Doria A., Dubessy J. and Charoy B. (1991). Characterization and timing of the different types of fluids present in the barren and ore-veins of the W-Sn deposit of Panasqueira, Central Portugal. Mineralium Deposita, 27, 72-79.

    Google Scholar 

  • Nykänen V. (2008). Spatial data analysis as a tool for mineral prospectivity mapping. PhD Thesis, Geological Survey of Finland, Espoo, 27 pp., and 6 original articles.

    Google Scholar 

  • Nykänen V., Groves D.I., Ojala V.J., Gardoll S.J. (2008). Combined conceptual/empirical prospectivity mapping for orogenic gold in the northern Fennoscandian Shield, Finland. Australian Journal of Earth Sciences, 55 (1), 39-59.

    Google Scholar 

  • Oszczepalski S., Blundell D. (2005). Kupferschiefer copper deposits of SW Poland: Lubin-Sieroszowice District. Ore Geology Reviews, 27, p. 271.

    Google Scholar 

  • Petrascheck W.E. (1989). The genesis of allochthonous karst-type bauxite deposits of southern Europe. Mineral. Deposita, 24, 77-81.

    Google Scholar 

  • Plimer I.R. (1987). Fundamental parameters for the formation of granite-related tin deposits. Geologische Rundschau, 76/1, 23-40.

    Google Scholar 

  • Raith J.G., Stein H.J. (2006). Variscan ore formation and metamorphism at the Felbertal scheelite deposit (Austria): constraining tungsten mineralization from Re Os dating of molybdenite. Contributions to Mineralogy and Petrology, 152, 505-521.

    Google Scholar 

  • Rehnström E.F. (2003). Geochronology and petrology of the Tielma Magmatic Complex, northern Swedish Caledonides – results and tectonic implications. Norwegian Journal of Geology, 83, 243-257.

    Google Scholar 

  • Romeo I., Lunar R., Capote R., Quesada C., Dunning G.R., Pina R., Ortega L. (2006). U-Pb age constraints on Variscan magmatism and Ni-Cu-PGE metallogeny in the Ossa-Morena zone (SW Iberia). Journal of the Geological Society, 163 (5), 837-846.

    Google Scholar 

  • Romer R.L., Öhlander B. (1994). U‐Pb age of the Yxsjöberg Tungsten‐Skarn deposit, Sweden. GFF, 116(3), 161-166.

    Google Scholar 

  • Roy R., Cassard D., Cobbold P.R., Rossello E.A., Billa M., Bailly L., Lips A.L.W. (2006). Predictive mapping for copper-gold magmatic-hydrothermal systems in NW Argentina: use of a regional-scale GIS, application of an expert-guided data-driven approach, and comparison with results from a continental-scale GIS. Ore Geology Reviews, 29, 260-286.

    Google Scholar 

  • Sánchez S.M.T., Benito M.C. M., Pérez, M.L.C. (2009). Mineralogical and physiochemical evolution of the Los Santos scheelite skarn, Salamanca, NW Spain. Economic Geology, 104(7), 961-995.

    Google Scholar 

  • Sandstad J. S., Bjerkgård T., Boyd R., Ihlen P., Korneliussen A., Nilsson L. P., Often M., Eilu P., Hallberg A. (2012). Metallogenic areas in Norway. In Mineral deposits and metallogeny of Fennoscandia (P. Eilu Ed.), Geological Survey of Finland, Special Paper 53, 35–138.

    Google Scholar 

  • Schärer U., Wilmar, E., Duchesne J.C. (1996). The short duration and anorogenic character of anorthosite magmatism: U-Pb dating of the Rogaland complex, Norway. Earth and Planetary Science Letters, 139, 335–350.

    Google Scholar 

  • Schneider J. (2005). SEDEX/VMS deposits in the Rhenohercynian Zone, Germany Rammelsberg. Ore Geology Reviews 27, p. 268.

    Google Scholar 

  • Schwarz-Schampera U., Herzig P.M. (2002). Indium. Geology, mineralogy and economics. Springer-Verlag, Berlin, Heidelberg, New York, 276 pp.

    Google Scholar 

  • Singer D. A., Berger V. I., Moring B. C. (2008). Porphyry copper deposits of the world: database and grade and tonnage models. U.S.G.S. Open-File Report 2008-1155, 45 pp.

    Google Scholar 

  • Talvitie J., Paarma H. (1980). Precambrian basic magmatism and the Ti–Fe ore formation in central and northern Finland. Geological Survey of Finland Bulletin, 307, 98–107.

    Google Scholar 

  • Thomassin J.F., Charbonnier P., Angel J.M., Boudot A., Fauconnier D. (2001). Déchets miniers européens. Notice d’utilisation de la base DECHMINUE, issue des données du rapport “Mining Waste Management” de la DG Environnement. BRGM Report RP-51393-FR, 50 pp.

    Google Scholar 

  • Tkachev A., Cassard D., Cherkasov, S., Arbuzova E., Gateau, C., Maldan F., Ivashenko V., Debeglia N., Husson Y., Golubev A., Smolkin V., Leistel J.-M. (2008). Kola-Karelia GIS. Mineral deposits of the eastern part of the Fennoscandian Shield. NavigaSIG CD-ROM v. 1.0, July 2008, Russian-French Metallogenic Laboratory , Moscow. ISBN978-5-9900765-3-2.

    Google Scholar 

  • Tornos F., Casquet C., Rodriguez Pevida L., Velasco F. (2005). The iron oxide - (Cu–Au) deposits of SW Iberia: Fregenal–Burguillos–Cala district. Ore Geology Reviews, 27, 166-167.

    Google Scholar 

  • UNESCO (1984). Explanatory memoir of the metallogenic map of Europe and neighbouring countries, 1:2,500,000. Earth Sciences, 17, 560 pp.

    Google Scholar 

  • Vaasjoki M., Sorjonen-Ward P., Lavikainen S. (1993). U-Pb age determinations and sulphide Pb-Pb characteristics from the late Archaean Hattu schist belt, Ilomantsi, eastern Finland. Geological Survey of Finland, Special Paper 17, 103–131.

    Google Scholar 

  • Wanhainen C., Billström, K., Martinsson O., Stein H., Nordin R. (2005). 160 Ma of magmatic/hydrothermal activity in the Gällivare area: Re-Os dating of molybdenite and U-Pb dating of titanite from the Aitik Cu-Au-Ag deposit, northern Sweden. Mineralium Deposita, 40, 435–447.

    Google Scholar 

  • Webster J., Thomas R., Förster H.-J., Seltmann R., Tappe, C. (2004). Geochemical evolution of halogen-enriched granite magmas and mineralizing fluids of the Zinnwald tin-tungsten mining district, Erzgebirge, Germany. Mineralium Deposita, 39, 452-472.

    Google Scholar 

  • Weihed P. (2001). A review of Palaeoproterozoic intrusive hosted Cu-Au-Fe-oxide deposits in northern Sweden. In Weihed P. (Ed.): Economic Geology Research, 1, 4-32.

    Google Scholar 

  • Weihed P., Arndt N., Billström C., Duchesne J.C., Eilu P., Martinsson O., Papunen H., Lahtinen R. (2005). Precambrian geodynamics and ore formation: The Fennoscandian Shield. In: Special Issue on Geodynamics and Ore Deposit Evolution in Europe (D. Blundell, N. Arndt, P.R. Cobbold and C. Heinrich Eds.). Ore Geology Reviews 27, 273–322.

    Google Scholar 

  • Weihed P., Eilu P. (2005). Fennoscandian Shield - Proterozoic VMS deposits. In: Special Issue on Geodynamics and Ore Deposit Evolution in Europe (D. Blundell, N. Arndt, P.R. Cobbold and C. Heinrich Eds.). Ore Geology Reviews, 27, 324–325.

    Google Scholar 

  • Weihed P., Eilu P., Larsen R. B., Stendal H., Tontti M. (2008). Metallic mineral deposits in the Nordic countries. Episodes, 31 (1), 125-132.

    Google Scholar 

  • Williamson B.J., Shaw A., Downes H., Thirlwall M.F. (1996). Geochemical constraints on the genesis of Hercynian two-mica leucogranites from the Massif Central, France. Chemical Geology, 127, 25–42.

    Google Scholar 

  • Woodard J. (2010). Genesis and Emplacement of Carbonatites and Lamprophyres in the Svecofennian Domain. Academic Dissertation, University of Turku, Finland, 50 pp.

    Google Scholar 

  • Woolley A.R., Kjarsgaard B.A. (2008). Carbonatite occurrences of the world: map and database. Geological Survey of Canada, Open File 5796, 28pp.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thanks all WP1 ProMine partners for their fruitful collaboration and contributions: Soile Aatos (GTK, Finland), Vassiliki Aggelatou (IGME, Greece), Nikolaos Arvanitidis (IGME, Greece; now at SGU, Sweden), Anne-Sophie Audion (BRGM, France), Dimitrios Ballas (Hellas Gold S.A., Greece), Christos Christidis (IGME, Greece), Alexandros Demetriadis (IGME, Greece), Dimitrina Dimitrova (Bulgarian Academy of Sciences, Bulgaria), Pasi Eilu (GTK, Finland), Augusto Filipe (LNEG, Portugal), Emmy Gazea (Hellas Gold S.A., Greece), Philippe Gentilhomme (BRGM, France), Eric Gloaguen (BRGM, France), Jérome Gouin (BRGM, France), Dimitrios Iliopoulos (IGME, Greece), Carlos Inverno (LNEG, Portugal), Christian Joannes (BRGM, France), Maria João Batista (LNEG, Portugal), Tuomo Karinen (GTK, Finland; now at Mustavaaran Kaivos Oy, Finland), Teemu Karlsson (GTK, Finland), Esa Kauniskangas (GTK, Finland), Panu Lintinen (GTK, Finland), Timo Mäki (Pyhäsalmi Mine Oy, Finland), Frédérik Maldan (BRGM, France), Ioannis Marantos (IGME, Greece), Santiago Martin Alfageme (IGME, Spain), João Matos (LNEG, Portugal), Maël Meliani (BRGM, France), Constantinos Michael (IGME, Greece), Wojciech Mizera (KGHM Cuprum, Poland), Vassilka Mladenova (Sofia University, Bulgaria), Javier Navas (IGME, Spain), Mateusz Niedbal (KGHM Cuprum, Poland), Ewan Pelleter (BRGM, France; now at IFREMER, France), George Perantonis (Hellas Gold S.A., Greece), Jean-Claude Picot (BRGM, France), Jacek Pyra (KGHM Cuprum, Poland), Francis Ralay (BRGM, France), Ignace Salpeteur (BRGM, France), Helena Santana (LNEG, Portugal), Todor Serafimovski (Goce Delčev University, FYROM), Juha Strengell (GTK, Finland), Michal Strzelecki (KGHM Cuprum, Poland), Goran Tasev (Goce Delčev University, FYROM), François Tertre (BRGM, France), Fernando Tornos (IGME, Spain) and George Tudor (Institutul Geologic al României, Romania). The authors also want to kindly thank ProMine’s Project Leader Juha KAIJA (GTK, Finland) for his constant support. Detailed reviews by Gus GUNN and Martiya SADEGHI are kindly acknowledged and have substantially contributed to improve the initial manuscript. The ProMine project was funded by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 228559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Cassard .

Editor information

Editors and Affiliations

Appendices

Appendix 1

Class Threshold Values for Selected Commodities

Commodity

Description

Class threshold values (in metric tons)

Super-large deposits (class A)

Large deposits (class B)

Medium deposits (class C)

Small deposits (class D)

Ag

Silver (metal)

10,000

2,500

500

100

Al

Aluminum (Bauxite ore)

1,000,000,000

100,000,000

10,000,000

1,000,000

Au

Gold (metal)

500

100

10

1

Be

Beryllium (BeO)

20,000

2,000

200

50

Bi

Bismuth (metal)

20,000

2,000

200

2

Brt

Barite (BaSO4)

5,000,000

1,000,000

200,000

50,000

Cd

Cadmium (metal)

10,000

2,000

500

100

Co

Cobalt (metal)

500,000

50,000

2,000

200

Cr

Chrome (Cr2O3)

25,000,000

5,000,000

1,000,000

200,000

Cu

Copper (metal)

10,000,000

1,000,000

100,000

10,000

Fe

Iron (metal)

1,000,000,000

100,000,000

10,000,000

1,000,000

Fl

Fluorite (CaF2)

5,000,000

1,000,000

200,000

50,000

Ga

Gallium (metal)

100

50

10

1

Ge

Germanium (metal)

500

100

20

5

Gr

Graphite (substance)

10,000,000

1,000,000

100,000

10,000

Hf

Hafnium (metal)

10,000

1,000

100

10

Hg

Mercury (metal)

50,000

5,000

500

100

In

Indium (metal)

500

100

25

5

Li

Lithium (Li2O)

1,000,000

100,000

50,000

5,000

Mg

Magnesium, magnesite (MgCO3)

100,000,000

10,000,000

1,000,000

100,000

Mn

Manganese (metal)

100,000,000

10,000,000

1,000,000

100,000

Mo

Molybdenum (metal)

500,000

100,000

5,000

1,000

Nb

Niobium–columbium (Nb2O5)

1,000,000

100,000

10,000

2,000

Ni

Nickel (metal)

2,000,000

500,000

20,000

2,000

PbZn

Lead + Zinc (metal)

10,000,000

1,000,000

100,000

10,000

Pltd

Platinoids, group (metal)

1,000

100

10

1

Rb

Rubidium (Rb2O)

1,000

100

10

1

Re

Rhenium (metal)

5,000

500

50

5

REE

Rare Earths (RE2O3)

1,000,000

100,000

10,000

1,000

Sb

Antimony (metal)

100,000

25,000

2,000

1,000

Se

Selenium (substance)

5,000

1,000

250

50

Sn

Tin (metal)

200,000

25,000

1,000

100

Ta

Tantalum (Ta2O5)

25,000

2,000

1,000

200

Ti

Titanium, general (TiO2)

20,000,000

2,000,000

200,000

20,000

V

Vanadium (metal)

2,000,000

200,000

20,000

2,000

W

Wolfram (WO3)

200,000

50,000

5,000

500

Zr

Zirconium (ZrO2)

1,000,000

100,000

10,000

1,000

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cassard, D. et al. (2015). ProMine Mineral Databases: New Tools to Assess Primary and Secondary Mineral Resources in Europe. In: Weihed, P. (eds) 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe. Mineral Resource Reviews. Springer, Cham. https://doi.org/10.1007/978-3-319-17428-0_2

Download citation

Publish with us

Policies and ethics