Skip to main content

Drug Removal by CRRT and Drug Dosing in Patients on CRRT

  • Chapter
  • 2482 Accesses

Abstract

Correct drug dosing is of utmost importance for therapeutic success in critically ill patients. This especially applies to sepsis where early adequate dosing of antibiotics may be lifesaving. Correct drug dosing should take into account the major alterations in pharmacokinetics induced by critical illness and the drug’s pharmacokinetic/pharmacodynamic relationship. The addition of continuous renal replacement therapy (CRRT) adds another factor of uncertainty. The main factors affecting extracorporeal drug removal include effluent flow rate, protein binding and volume of distribution. Especially for hydrophilic drugs with small distribution volume and mainly renal elimination, the extracorporeal treatment will contribute significantly to the total body clearance and thus require dosage adaptation. The important and dynamic pharmacokinetic alterations induced by the underlying illness and the variability in CRRT treatments preclude a “one size fits all” approach. Therapeutic drug monitoring (TDM) is the only reliable method to guide dosing in these complex patients. If TDM is not available, understanding the drug’s pharmacokinetic profile and the characteristics of the CRRT treatment are most helpful.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Smith BS, Levasseur-Franklin KE, Forni A, Fong J. Introduction to drug pharmacokinetics in the critically ill patient. Chest. 2012;141:1327–36.

    Article  CAS  PubMed  Google Scholar 

  2. Udy AA, Roberts JA, Lipman J. Clinical implications of antibiotic pharmacokinetic principles in the critically ill. Intensive Care Med. 2013;39:2070–82.

    Article  CAS  PubMed  Google Scholar 

  3. Seyler L, Cotton F, Taccone FS, De Backer D, Macours P, Vincent JL, et al. Recommended β-lactam regimens are inadequate in septic patients treated with continuous renal replacement therapy. Crit Care. 2011;15:R137.

    Article  PubMed Central  PubMed  Google Scholar 

  4. Bauer SR, Salem C, Connor Jr MJ, Groszek J, Taylor ME, Wei P, et al. Pharmacokinetics and pharmacodynamics of piperacillin-tazobactam in 42 patients treated with concomitant CRRT. Clin J Am Soc Nephrol. 2012;7:452–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Roberts DM, Roberts JA, Roberts MS, Liu X, Nair P, Cole L, et al. Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med. 2012;40:1523–8.

    Article  CAS  PubMed  Google Scholar 

  6. Schetz M. Drug dosing in continuous renal replacement therapy: general rules. Curr Opin Crit Care. 2007;13:645–51.

    Article  PubMed  Google Scholar 

  7. Pea F, Viale P, Pavan F, Furlanut M. Pharmacokinetic considerations for antimicrobial therapy in patients receiving renal replacement therapy. Clin Pharmacokinet. 2007;46:997–1038.

    Article  CAS  PubMed  Google Scholar 

  8. Choi G, Gomersall CD, Tian Q, Joynt GM, Freebairn R, Lipman J. Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med. 2009;37:2268–82.

    Article  CAS  PubMed  Google Scholar 

  9. Awdishu L, Bouchard J. How to optimize drug delivery in renal replacement therapy. Semin Dial. 2011;24:176–82.

    Article  PubMed  Google Scholar 

  10. Roberts JA, Pea F, Lipman J. The clinical relevance of plasma protein binding changes. Clin Pharmacokinet. 2013;52:1–8.

    Article  CAS  PubMed  Google Scholar 

  11. Golper TA. Update on drug sieving coefficients and dosing adjustments during continuous renal replacement therapies. Contrib Nephrol. 2001;132:349–53.

    CAS  PubMed  Google Scholar 

  12. Bouman CS, van Kan HJ, Koopmans RP, Korevaar JC, Schultz MJ, Vroom MB. Discrepancies between observed and predicted continuous venovenous hemofiltration removal of antimicrobial agents in critically ill patients and the effects on dosing. Intensive Care Med. 2006;32:2013–9.

    Article  PubMed  Google Scholar 

  13. Bilgrami I, Roberts JA, Wallis SC, Thomas J, Davis J, Fowler S, et al. Meropenem dosing in critically ill patients with sepsis receiving high-volume continuous venovenous hemofiltration. Antimicrob Agents Chemother. 2010;54:2974–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Frazee EN, Kuper PJ, Schramm GE, Larson SL, Kashani KB, Osmon DR, et al. Effect of continuous venovenous hemofiltration dose on the achievement of adequate vancomycin trough concentrations. Antimicrob Agents Chemother. 2012;56:6181–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Joannes-Boyau O, Honoré PM, Perez P, Bagshaw SM, Grand H, Canivet JL, et al. High-volume versus standard-volume haemofiltration for septic shock patients with acute kidney injury (IVOIRE study): a multicentre randomized controlled trial. Intensive Care Med. 2013;39:535–46.

    Article  Google Scholar 

  16. Jeffrey RF, Khan AA, Prabhu P, Todd N, Goutcher E, Will EJ, et al. A comparison of molecular clearance rates during continuous hemofiltration and hemodialysis with a novel volumetric continuous renal replacement system. Artif Organs. 1994;18:425–8.

    Article  CAS  PubMed  Google Scholar 

  17. Vilay AM, Shah KH, Churchwell MD, Patel JH, DePestel DD, Mueller BA. Modeled dalbavancin transmembrane clearance during intermittent and continuous renal replacement therapies. Blood Purif. 2010;30:37–43.

    Article  CAS  PubMed  Google Scholar 

  18. Schroeder TH, Krueger WA, Hansen M, Hoffmann E, Dieterich HJ, Unertl K. Elimination of meropenem by continuous hemo(dia) filtration: an in vitro one-compartment model. Int J Artif Organs. 1999;22:307–12.

    CAS  PubMed  Google Scholar 

  19. Joy MS, Matzke GR, Frye RF, Palevsky PM. Determinants of vancomycin clearance by continuous venovenous hemofiltration and continuous venovenous hemodialysis. Am J Kidney Dis. 1998;31:1019–27.

    Article  CAS  PubMed  Google Scholar 

  20. Reetze-Bonorden P, Bohler J, Keller E. Drug dosage in patients during continuous renal replacement therapy. Pharmacokinetic and therapeutic considerations. Clin Pharmacokinet. 1993;24:362–79.

    Article  CAS  PubMed  Google Scholar 

  21. Brunet S, Leblanc M, Geadah D, Parent D, Courteau S, Cardinal J. Diffusive and convective solute clearances during continuous renal replacement therapy at various dialysate and ultrafiltration flow rates. Am J Kidney Dis. 1999;34:486–92.

    Article  CAS  PubMed  Google Scholar 

  22. Choi G, Gomersall CD, Lipman J, Wong A, Joynt GM, Leung P, et al. The effect of adsorption, filter material and point of dilution on antibiotic elimination by haemofiltration: an in vitro study of levofloxacin. Int J Antimicrob Agents. 2004;24:468–72.

    CAS  PubMed  Google Scholar 

  23. Tian Q, Gomersall CD, Wong A, Leung P, Choi G, Joynt GM, et al. Effect of drug concentration on adsorption of levofloxacin by polyacrylonitrile haemofilters. J Antimicrob Agents. 2006;28:147–50.

    Article  CAS  Google Scholar 

  24. Tian Q, Gomersall CD, Leung PP, Choi GY, Joynt GM, Tan PE, et al. The adsorption of vancomycin by polyacrylonitrile, polyamide, and polysulfone hemofilters. Artif Organs. 2008;32:81–4.

    CAS  PubMed  Google Scholar 

  25. Tian Q, Gomersall CD, Ip M, Tan PE, Joynt GM, Choi GY. Adsorption of amikacin, a significant mechanism of elimination by hemofiltration. Antimicrob Agents Chemother. 2008;52:1009–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Lam KN, Tian Q, Ip M, Gomersall CD. In vitro adsorption of gentamicin and netilmicin by polyacrylonitrile and polyamide hemofiltration filters. Antimicrob Agents Chemother. 2010;54:963–5.

    Article  CAS  Google Scholar 

  27. Vilay AM, Churchwell MD, Mueller BA. Clinical review: drug metabolism and nonrenal clearance in acute kidney injury. Crit Care. 2008;12:235.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Philips BJ, Lane K, Dixon J, Macphee I. The effects of acute renal failure on drug metabolism. Expert Opin Drug Metab Toxicol. 2014;10:11–23.

    Article  CAS  PubMed  Google Scholar 

  29. Macvane SH, Kuti JL, Nicolau DP. Prolonging β-lactam infusion: a review of the rationale and evidence, and guidance for implementation. Int J Antimicrob Agents. 2013. pii: S0924-8579(13)00378-6. doi:10.1016/j.ijantimicag.2013.10.021. [Epub ahead of print].

  30. Falagas ME, Tansarli GS, Ikawa K, Vardakas KZ. Clinical outcomes with extended or continuous versus short-term intravenous infusion of carbapenems and piperacillin/tazobactam: a systematic review and meta-analysis. Clin Infect Dis. 2013;56:272–82.

    Article  CAS  PubMed  Google Scholar 

  31. Trotman RL, Williamson JC, Shoemaker DM, Salzer WL. Antibiotic dosing in critically ill adult patients receiving continuous renal replacement therapy. Clin Infect Dis. 2005;41:1159–66.

    Article  CAS  PubMed  Google Scholar 

  32. Choi G, Gomersall CD, Tian Q, Joynt GM, Li AM, Lipman J. Principles of antibacterial dosing in continuous renal replacement therapy. Blood Purif. 2010;30:195–212.

    Article  CAS  PubMed  Google Scholar 

  33. Li AM, Gomersall CD, Choi G, Tian Q, Joynt GM, Lipman J. A systematic review of antibiotic dosing regimens for septic patients receiving continuous renal replacement therapy: do current studies supply sufficient data? J Antimicrob Chemother. 2009;64:929–37.

    Article  CAS  PubMed  Google Scholar 

  34. Vaara S, Pettila V, Kaukonen KM. Quality of pharmacokinetic studies in critically ill patients receiving continuous renal replacement therapy. Acta Anaesthesiol Scand. 2012;56:147–57.

    Article  CAS  PubMed  Google Scholar 

  35. Udy AA, Covajes C, Taccone FS, Jacobs F, Vincent JL, Lipman J, et al. Can population pharmacokinetic modelling guide vancomycin dosing during continuous renal replacement therapy in critically ill patients? Int J Antimicrob Agents. 2013;41:564–8.

    Article  CAS  PubMed  Google Scholar 

  36. Layeux B, Taccone FS, Fagnoul D, Vincent JL, Jacobs F. Amikacin monotherapy for sepsis caused by pan-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2010;54:4939–41.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Sime FB, Roberts MS, Peake SL, Lipman J, Roberts JA. Does Beta-lactam pharmacokinetic variability in critically ill patients justify therapeutic drug monitoring? A systematic review. Ann Intensive Care. 2012;2:35.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Pea F. Plasma pharmacokinetics of antimicrobial agents in critically ill patients. Curr Clin Pharmacol. 2013;8:5–12.

    CAS  PubMed  Google Scholar 

  39. Hayashi Y, Lipman J, Udy AA, Ng M, McWhinney B, Ungerer J, et al. β-Lactam therapeutic drug monitoring in the critically ill: optimising drug exposure in patients with fluctuating renal function and hypoalbuminaemia. Int J Antimicrob Agents. 2013;41:162–6

    Google Scholar 

  40. Matzke GR, Frye RF, Joy MS, Palevsky PM. Determinants of ceftriaxone clearance by continuous venovenous hemofiltration and hemodialysis. Pharmacotherapy. 2000;20:635–43.

    Article  CAS  PubMed  Google Scholar 

  41. Radej J, Krouzecky A, Stehlik P, Sykora R, Chvojka J, Karvunidis T, et al. Pharmacokinetic evaluation of voriconazole treatment in critically ill patients undergoing continuous venovenous hemofiltration. Ther Drug Monit. 2011;33:393–7.

    Article  CAS  PubMed  Google Scholar 

  42. Bellmann R, Egger P, Djanani A, Wiedermann CJ. Pharmacokinetics of amphotericin B lipid complex in critically ill patients on continuous veno-venous haemofiltration. Int J Antimicrob Agents. 2004;23:80–3.

    Article  CAS  PubMed  Google Scholar 

  43. Weiler S, Seger C, Pfisterer H, Stienecke E, Stippler F, Welte R, et al. Pharmacokinetics of caspofungin in critically ill patients on continuous renal replacement therapy. Antimicrob Agents Chemother. 2013;57:4053–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Swart EL, de Jongh J, Zuideveld KP, Danhof M, Thijs LG, Strack van Schijndel RJ. Population pharmacokinetics of lorazepam and midazolam and their metabolites in intensive care patients on continuous venovenous hemofiltration. Am J Kidney Dis. 2005;45:360–71.

    Article  CAS  PubMed  Google Scholar 

  45. Bolon M, Bastien O, Flamens C, Paulus S, Boulieu R. Midazolam disposition in patients undergoing continuous venovenous hemodialysis. J Clin Pharmacol. 2001;41:959–62.

    Article  CAS  PubMed  Google Scholar 

  46. Roberts JA, Joynt GM, Choi GY, Gomersall CD, Lipman J. How to optimise antimicrobial prescriptions in the Intensive Care Unit: principles of individualised dosing using pharmacokinetics and pharmacodynamics. Int J Antimicrob Agents. 2012;39:187–92.

    Article  CAS  PubMed  Google Scholar 

  47. McKenzie C. Antibiotic dosing in critical illness. J Antimicrob Chemother. 2011;66 Suppl 2:ii25–31.

    CAS  PubMed  Google Scholar 

  48. Petrosillo N, Drapeau CM, Agrafiotis M, Falagas ME. Some current issues in the pharmacokinetics/pharmacodynamics of antimicrobials in intensive care. Minerva Anestesiol. 2010;76:509–24.

    CAS  PubMed  Google Scholar 

  49. Nicolau DP, Crowe H, Nightingale CH, Quintiliani R. Effect of continuous arteriovenous hemodiafiltration on the pharmacokinetics of fluconazole. Pharmacotherapy. 1994;14:502–5.

    CAS  PubMed  Google Scholar 

  50. Yagasaki K, Gando S, Matsuda N, Kameue T, Ishitani T, Hirano T, et al. Pharmacokinetics and the most suitable dosing regimen of fluconazole in critically ill patients receiving continuous hemodiafiltration. Intensive Care Med. 2003;29:1844–8.

    Article  PubMed  Google Scholar 

  51. Bergner R, Hoffmann M, Riedel KD, Mikus G, Henrich DM, Haefeli WE, et al. Fluconazole dosing in continuous veno-venous haemofiltration (CVVHF): need for a high daily dose of 800 mg. Nephrol Dial Transplant. 2006;21:1019–23.

    Article  CAS  PubMed  Google Scholar 

  52. Patel K, Roberts JA, Lipman J, Tett SE, Deldot ME, Kirkpatrick CM. Population pharmacokinetics of fluconazole in critically ill patients receiving continuous venovenous hemodiafiltration – using Monte Carlo Simulations to predict doses for specified pharmacodynamic targets. Antimicrob Agents Chemother. 2011;55:5868–73.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, et al. Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother. 2011;55:3284–94.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kroh UF. Drug administration in critically ill patients with acute renal failure. New Horiz. 1995;3:748–59.

    CAS  PubMed  Google Scholar 

  55. Schetz M, Ferdinande P, Van den Berghe G, Verwaest C, Lauwers P. Pharmacokinetics of continuous renal replacement therapy. Intensive Care Med. 1995;21:612–20.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miet Schetz MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Schetz, M., Joannes-Boyau, O., Bouman, C. (2015). Drug Removal by CRRT and Drug Dosing in Patients on CRRT. In: Oudemans-van Straaten, H., Forni, L., Groeneveld, A., Bagshaw, S., Joannidis, M. (eds) Acute Nephrology for the Critical Care Physician. Springer, Cham. https://doi.org/10.1007/978-3-319-17389-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17389-4_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17388-7

  • Online ISBN: 978-3-319-17389-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics