Skip to main content

Role of Cholesterol and Phospholipids in Amylin Misfolding, Aggregation and Etiology of Islet Amyloidosis

  • Chapter
Lipids in Protein Misfolding

Abstract

Amyloidosis is a biological event in which proteins undergo structural transitions from soluble monomers and oligomers to insoluble fibrillar aggregates that are often toxic to cells. Exactly how amyloid proteins, such as the pancreatic hormone amylin, aggregate and kill cells is still unclear. Islet amyloid polypeptide, or amylin, is a recently discovered hormone that is stored and co-released with insulin from pancreatic islet β-cells. The pathology of type 2 diabetes mellitus (T2DM) is characterized by an excessive extracellular and intracellular accumulation of toxic amylin species, soluble oligomers and insoluble fibrils, in islets, eventually leading to β-cell loss. Obesity and elevated serum cholesterol levels are additional risk factors implicated in the development of T2DM. Because the homeostatic balance between cholesterol synthesis and uptake is lost in diabetics, and amylin aggregation is a hallmark of T2DM, this chapter focuses on the biophysical and cell biology studies exploring molecular mechanisms by which cholesterol and phospholipids modulate secondary structure, folding and aggregation of human amylin and other amyloid proteins on membranes and in cells. Amylin turnover and toxicity in pancreatic cells and the regulatory role of cholesterol in these processes are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AFM:

Atomic force microscopy

BCD:

Methylbetacyclodextrin

CD:

Circular dichroism

CTX:

Cholera toxin

DOPC:

1,2-dioleoyl-phosphatidylcholine

DOPS:

1,2-dioleoylphosphatidylserine

EM:

Electron microscopy

HFIP:

Hexafluoride isopropanol

hIAPP:

Human islet amyloid peptide

Lov:

Lovostatin

PM:

Plasma membranes

T2DM:

Type 2 diabetes mellitus

ThT:

Thioflavin-T

Trf:

Transferrin

References

  • Abedini A, Raleigh DP (2005) The role of His-18 in amyloid formation by human islet amyloid polypeptide. Biochemistry 44(49):16284–16291

    CAS  PubMed  Google Scholar 

  • Abedini A, Schmidt AM (2013) Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett 587(8):1119–1127

    CAS  PubMed  Google Scholar 

  • Ancsin JB (2003) Amyloidogenesis: historical and modern observations point to heparan sulfate proteoglycans as a major culprit. Amyloid 10(2):67–79

    CAS  PubMed  Google Scholar 

  • Barrett PJ, Song Y, Van Horn WD, Hustedt EJ, Schafer JM, Hadziselimovic A et al (2012) The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol. Science 336(6085):1168–1171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brender JR, Hartman K, Reid KR, Kennedy RT, Ramamoorthy A (2008a) A single mutation in the nonamyloidogenic region of islet amyloid polypeptide greatly reduces toxicity. Biochemistry 47(48):12680–12688

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brender JR, Lee EL, Cavitt MA, Gafni A, Steel DG, Ramamoorthy A (2008b) Amyloid fiber formation and membrane disruption are separate processes localized in two distinct regions of IAPP, the type-2-diabetes-related peptide. J Am Chem Soc 130(20):6424–6429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Burke KA, Yates EA, Legleiter J (2013) Biophysical insights into how surfaces, including lipid membranes, modulate protein aggregation related to neurodegeneration. Front Neurol 4:17

    PubMed Central  PubMed  Google Scholar 

  • Caminos JE, Bravo SB, Garces MF, Gonzalez CR, Cepeda LA, Gonzalez AC et al (2009) Vaspin and amylin are expressed in human and rat placenta and regulated by nutritional status. Histol Histopathol 24(8):979–990

    CAS  PubMed  Google Scholar 

  • Cao P, Tu LH, Abedini A, Levsh O, Akter R, Patsalo V et al (2012) Sensitivity of amyloid formation by human islet amyloid polypeptide to mutations at residue 20. J Mol Biol 421(2–3):282–295

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao P, Abedini A, Wang H, Tu LH, Zhang X, Schmidt AM et al (2013a) Islet amyloid polypeptide toxicity and membrane interactions. Proc Natl Acad Sci U S A 110(48):19279–19284

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H et al (2013b) Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett 587(8):1106–1118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Z, Rand RP (1997) The influence of cholesterol on phospholipid membrane curvature and bending elasticity. Biophys J 73(1):267–276

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    CAS  PubMed  Google Scholar 

  • Chiu CC, Singh S, de Pablo JJ (2013) Effect of proline mutations on the monomer conformations of amylin. Biophys J 105(5):1227–1235

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cho WJ, Jena BP, Jeremic AM (2008) Nano-scale imaging and dynamics of amylin-membrane interactions and its implication in type II diabetes mellitus. Methods Cell Biol 90:267–286

    CAS  PubMed  Google Scholar 

  • Cho WJ, Trikha S, Jeremic AM (2009) Cholesterol regulates assembly of human islet amyloid polypeptide on model membranes. J Mol Biol 393(3):765–775

    CAS  PubMed  Google Scholar 

  • Clark A, Nilsson MR (2004) Islet amyloid: a complication of islet dysfunction or an aetiological factor in type 2 diabetes? Diabetologia 47(2):157–169

    CAS  PubMed  Google Scholar 

  • Cooper GJ, Willis AC, Clark A, Turner RC, Sim RB, Reid KB (1987) Purification and characterization of a peptide from amyloid-rich pancreases of type 2 diabetic patients. Proc Natl Acad Sci U S A 84(23):8628–8632

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cossec JC, Marquer C, Panchal M, Lazar AN, Duyckaerts C, Potier MC (2010) Cholesterol changes in Alzheimer’s disease: methods of analysis and impact on the formation of enlarged endosomes. Biochim Biophys Acta 1801(8):839–845

    CAS  PubMed  Google Scholar 

  • Costes S, Gurlo T, Rivera JF, Butler PC (2014) UCHL1 deficiency exacerbates human islet amyloid polypeptide toxicity in beta-cells: evidence of interplay between the ubiquitin/proteasome system and autophagy. Autophagy 10(6):1004–1014

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Franceschi G, Frare E, Pivato M, Relini A, Penco A, Greggio E et al (2011) Structural and morphological characterization of aggregated species of alpha-synuclein induced by docosahexaenoic acid. J Biol Chem 286(25):22262–22274

    PubMed Central  PubMed  Google Scholar 

  • Engel MF, Yigittop H, Elgersma RC, Rijkers DT, Liskamp RM, de Kruijff B et al (2006) Islet amyloid polypeptide inserts into phospholipid monolayers as monomer. J Mol Biol 356(3):783–789

    CAS  PubMed  Google Scholar 

  • Engel MF, Khemtemourian L, Kleijer CC, Meeldijk HJ, Jacobs J, Verkleij AJ et al (2008) Membrane damage by human islet amyloid polypeptide through fibril growth at the membrane. Proc Natl Acad Sci U S A 105(16):6033–6038

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fan L, Westermark G, Chan SJ, Steiner DF (1994) Altered gene structure and tissue expression of islet amyloid polypeptide in the chicken. Mol Endocrinol 8(6):713–721

    CAS  PubMed  Google Scholar 

  • Fryer JD, Simmons K, Parsadanian M, Bales KR, Paul SM, Sullivan PM et al (2005) Human apolipoprotein E4 alters the amyloid-beta 40:42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J Neurosci 25(11):2803–2810

    CAS  PubMed  Google Scholar 

  • Gazit E (2002) A possible role for pi-stacking in the self-assembly of amyloid fibrils. FASEB J 16(1):77–83

    CAS  PubMed  Google Scholar 

  • German MS, Moss LG, Wang J, Rutter WJ (1992) The insulin and islet amyloid polypeptide genes contain similar cell-specific promoter elements that bind identical beta-cell nuclear complexes. Mol Cell Biol 12(4):1777–1788

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goldsbury C, Kistler J, Aebi U, Arvinte T, Cooper GJ (1999) Watching amyloid fibrils grow by time-lapse atomic force microscopy. J Mol Biol 285(1):33–39

    CAS  PubMed  Google Scholar 

  • Granzotto A, Suwalsky M, Zatta P (2011) Physiological cholesterol concentration is a neuroprotective factor against beta-amyloid and beta-amyloid-metal complexes toxicity. J Inorg Biochem 105(8):1066–1072

    CAS  PubMed  Google Scholar 

  • Green JD, Goldsbury C, Kistler J, Cooper GJ, Aebi U (2004) Human amylin oligomer growth and fibril elongation define two distinct phases in amyloid formation. J Biol Chem 279(13):12206–12212

    CAS  PubMed  Google Scholar 

  • Haataja L, Gurlo T, Huang CJ, Butler PC (2008) Islet amyloid in type 2 diabetes, and the toxic oligomer hypothesis. Endocr Rev 29(3):303–316

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hayashi H, Mizuno T, Michikawa M, Haass C, Yanagisawa K (2000) Amyloid precursor protein in unique cholesterol-rich microdomains different from caveolae-like domains. Biochim Biophys Acta 1483(1):81–90

    CAS  PubMed  Google Scholar 

  • Hoppener JW, Lips CJ (2006) Role of islet amyloid in type 2 diabetes mellitus. Int J Biochem Cell Biol 38(5–6):726–736

    PubMed  Google Scholar 

  • Hoppener JW, Ahren B, Lips CJ (2000) Islet amyloid and type 2 diabetes mellitus. N Engl J Med 343(6):411–419

    CAS  PubMed  Google Scholar 

  • Huang CJ, Gurlo T, Haataja L, Costes S, Daval M, Ryazantsev S et al (2011) Calcium-activated calpain-2 is a mediator of beta cell dysfunction and apoptosis in type 2 diabetes. J Biol Chem 285(1):339–348

    Google Scholar 

  • Jaikaran ET, Clark A (2001) Islet amyloid and type 2 diabetes: from molecular misfolding to islet pathophysiology. Biochim Biophys Acta 1537(3):179–203

    CAS  PubMed  Google Scholar 

  • Janson J, Ashley RH, Harrison D, McIntyre S, Butler PC (1999) The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 48(3):491–498

    CAS  PubMed  Google Scholar 

  • Jayasinghe SA, Langen R (2005) Lipid membranes modulate the structure of islet amyloid polypeptide. Biochemistry 44(36):12113–12119

    CAS  PubMed  Google Scholar 

  • Jayasinghe SA, Langen R (2007) Membrane interaction of islet amyloid polypeptide. Biochim Biophys Acta 1768(8):2002–2009

    CAS  PubMed  Google Scholar 

  • Jha S, Sellin D, Seidel R, Winter R (2009) Amyloidogenic propensities and conformational properties of ProIAPP and IAPP in the presence of lipid bilayer membranes. J Mol Biol 389(5):907–920

    CAS  PubMed  Google Scholar 

  • Kayed R, Bernhagen J, Greenfield N, Sweimeh K, Brunner H, Voelter W et al (1999) Conformational transitions of islet amyloid polypeptide (IAPP) in amyloid formation in vitro. J Mol Biol 287(4):781–796

    CAS  PubMed  Google Scholar 

  • Kayed R, Head E, Thompson JL, McIntire TM, Milton SC, Cotman CW et al (2003) Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300(5618):486–489

    CAS  PubMed  Google Scholar 

  • Khemtemourian L, Killian JA, Hoppener JW, Engel MF (2008) Recent insights in islet amyloid polypeptide-induced membrane disruption and its role in beta-cell death in type 2 diabetes mellitus. Exp Diabetes Res 2008:421287

    PubMed Central  PubMed  Google Scholar 

  • Knight JD, Miranker AD (2004) Phospholipid catalysis of diabetic amyloid assembly. J Mol Biol 341(5):1175–1187

    CAS  PubMed  Google Scholar 

  • Knight JD, Hebda JA, Miranker AD (2006) Conserved and cooperative assembly of membrane-bound alpha-helical states of islet amyloid polypeptide. Biochemistry 45(31):9496–9508

    CAS  PubMed  Google Scholar 

  • Konarkowska B, Aitken JF, Kistler J, Zhang S, Cooper GJ (2006) The aggregation potential of human amylin determines its cytotoxicity towards islet beta-cells. FEBS J 273(15):3614–3624

    CAS  PubMed  Google Scholar 

  • Koo BW, Miranker AD (2005) Contribution of the intrinsic disulfide to the assembly mechanism of islet amyloid. Protein Sci 14(1):231–239

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krampert M, Bernhagen J, Schmucker J, Horn A, Schmauder A, Brunner H et al (2000) Amyloidogenicity of recombinant human pro-islet amyloid polypeptide (ProIAPP). Chem Biol 7(11):855–871

    CAS  PubMed  Google Scholar 

  • Lau TL, Gehman JD, Wade JD, Perez K, Masters CL, Barnham KJ et al (2007) Membrane interactions and the effect of metal ions of the amyloidogenic fragment Abeta(25–35) in comparison to Abeta(1–42). Biochim Biophys Acta 1768(10):2400–2408

    CAS  PubMed  Google Scholar 

  • Lee G, Pollard HB, Arispe N (2002) Annexin 5 and apolipoprotein E2 protect against Alzheimer’s amyloid-beta-peptide cytotoxicity by competitive inhibition at a common phosphatidylserine interaction site. Peptides 23(7):1249–1263

    CAS  PubMed  Google Scholar 

  • Lutz TA (2006) Amylinergic control of food intake. Physiol Behav 89(4):465–471

    CAS  PubMed  Google Scholar 

  • Lutz TA (2010) The role of amylin in the control of energy homeostasis. Am J Physiol Regul Integr Comp Physiol 298(6):R1475–R1484

    CAS  PubMed  Google Scholar 

  • MacArthur DL, de Koning EJ, Verbeek JS, Morris JF, Clark A (1999) Amyloid fibril formation is progressive and correlates with beta-cell secretion in transgenic mouse isolated islets. Diabetologia 42(10):1219–1227

    CAS  PubMed  Google Scholar 

  • Martin C (2006) The physiology of amylin and insulin: maintaining the balance between glucose secretion and glucose uptake. Diabetes Educ 32(Suppl 3):101S–104S

    PubMed  Google Scholar 

  • Martinez A, Kapas S, Miller MJ, Ward Y, Cuttitta F (2000) Coexpression of receptors for adrenomedullin, calcitonin gene-related peptide, and amylin in pancreatic beta-cells. Endocrinology 141(1):406–411

    CAS  PubMed  Google Scholar 

  • Marzban L, Trigo-Gonzalez G, Zhu X, Rhodes CJ, Halban PA, Steiner DF et al (2004) Role of beta-cell prohormone convertase (PC)1/3 in processing of pro-islet amyloid polypeptide. Diabetes 53(1):141–148

    CAS  PubMed  Google Scholar 

  • McGuinness B, Passmore P (2010) Can statins prevent or help treat Alzheimer’s disease? J Alzheimers Dis 20(3):925–933

    PubMed  Google Scholar 

  • McLatchie LM, Fraser NJ, Main MJ, Wise A, Brown J, Thompson N et al (1998) RAMPs regulate the transport and ligand specificity of the calcitonin-receptor-like receptor. Nature 393(6683):333–339

    CAS  PubMed  Google Scholar 

  • Mirzabekov TA, Lin MC, Kagan BL (1996) Pore formation by the cytotoxic islet amyloid peptide amylin. J Biol Chem 271(4):1988–1992

    CAS  PubMed  Google Scholar 

  • Miyazato M, Nakazato M, Shiomi K, Aburaya J, Toshimori H, Kangawa K et al (1991) Identification and characterization of islet amyloid polypeptide in mammalian gastrointestinal tract. Biochem Biophys Res Commun 181(1):293–300

    CAS  PubMed  Google Scholar 

  • Morfis M, Tilakaratne N, Furness SG, Christopoulos G, Werry TD, Christopoulos A et al (2008) Receptor activity-modifying proteins differentially modulate the G protein-coupling efficiency of amylin receptors. Endocrinology 149(11):5423–5431

    CAS  PubMed  Google Scholar 

  • Moriarty DF, Raleigh DP (1999) Effects of sequential proline substitutions on amyloid formation by human amylin20-29. Biochemistry 38(6):1811–1818

    CAS  PubMed  Google Scholar 

  • Mulder H, Ahren B, Sundler F (1996) Islet amyloid polypeptide and insulin gene expression are regulated in parallel by glucose in vivo in rats. Am J Physiol 271(6 Pt 1):E1008–E1014

    CAS  PubMed  Google Scholar 

  • Munishkina LA, Fink AL (2007) Fluorescence as a method to reveal structures and membrane-interactions of amyloidogenic proteins. Biochim Biophys Acta 1768(8):1862–1885

    CAS  PubMed  Google Scholar 

  • Nakazato M, Asai J, Miyazato M, Matsukura S, Kangawa K, Matsuo H (1990) Isolation and identification of islet amyloid polypeptide in normal human pancreas. Regul Pept 31(3):179–186

    CAS  PubMed  Google Scholar 

  • Nishi M, Sanke T, Seino S, Eddy RL, Fan YS, Byers MG et al (1989) Human islet amyloid polypeptide gene: complete nucleotide sequence, chromosomal localization, and evolutionary history. Mol Endocrinol 3(11):1775–1781

    CAS  PubMed  Google Scholar 

  • Opie EL (1901) On the relation of chronic interstitial pancreatitis to the Islands of Langerhans and to diabetes melutus. J Exp Med 5(4):397–428

    CAS  PubMed Central  PubMed  Google Scholar 

  • Padrick SB, Miranker AD (2002) Islet amyloid: phase partitioning and secondary nucleation are central to the mechanism of fibrillogenesis. Biochemistry 41(14):4694–4703

    CAS  PubMed  Google Scholar 

  • Pieri L, Bucciantini M, Guasti P, Savistchenko J, Melki R, Stefani M (2009) Synthetic lipid vesicles recruit native-like aggregates and affect the aggregation process of the prion Ure2p: insights on vesicle permeabilization and charge selectivity. Biophys J 96(8):3319–3330

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piper K, Brickwood S, Turnpenny LW, Cameron IT, Ball SG, Wilson DI et al (2004) Beta cell differentiation during early human pancreas development. J Endocrinol 181(1):11–23

    CAS  PubMed  Google Scholar 

  • Poyner DR, Sexton PM, Marshall I, Smith DM, Quirion R, Born W et al (2002) International Union of Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 54(2):233–246

    CAS  PubMed  Google Scholar 

  • Quist A, Doudevski I, Lin H, Azimova R, Ng D, Frangione B et al (2005) Amyloid ion channels: a common structural link for protein-misfolding disease. Proc Natl Acad Sci U S A 102(30):10427–10432

    CAS  PubMed Central  PubMed  Google Scholar 

  • Riediger T, Zuend D, Becskei C, Lutz TA (2004) The anorectic hormone amylin contributes to feeding-related changes of neuronal activity in key structures of the gut-brain axis. Am J Physiol Regul Integr Comp Physiol 286(1):R114–R122

    CAS  PubMed  Google Scholar 

  • Ritzel RA, Meier JJ, Lin CY, Veldhuis JD, Butler PC (2007) Human islet amyloid polypeptide oligomers disrupt cell coupling, induce apoptosis, and impair insulin secretion in isolated human islets. Diabetes 56(1):65–71

    CAS  PubMed  Google Scholar 

  • Rivera JF, Costes S, Gurlo T, Glabe CG, Butler PC (2014) Autophagy defends pancreatic beta cells from human islet amyloid polypeptide-induced toxicity. J Clin Invest 124(8):3489–3500

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rymer DL, Good TA (2000) The role of prion peptide structure and aggregation in toxicity and membrane binding. J Neurochem 75(6):2536–2545

    CAS  PubMed  Google Scholar 

  • Salamekh S, Brender JR, Hyung SJ, Nanga RP, Vivekanandan S, Ruotolo BT et al (2011) A two-site mechanism for the inhibition of IAPP amyloidogenesis by zinc. J Mol Biol 410(2):294–306

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schneider A, Schulz-Schaeffer W, Hartmann T, Schulz JB, Simons M (2006) Cholesterol depletion reduces aggregation of amyloid-beta peptide in hippocampal neurons. Neurobiol Dis 23(3):573–577

    CAS  PubMed  Google Scholar 

  • Simmons C, Ingham V, Williams A, Bate C (2014) Platelet-activating factor antagonists enhance intracellular degradation of amyloid-beta42 in neurons via regulation of cholesterol ester hydrolases. Alzheimers Res Ther 6(2):15

    PubMed Central  PubMed  Google Scholar 

  • Simons K, Toomre D (2000) Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1(1):31–39

    CAS  PubMed  Google Scholar 

  • Sipe JD, Benson MD, Buxbaum JN, Ikeda S, Merlini G, Saraiva MJ et al (2010) Amyloid fibril protein nomenclature: 2010 recommendations from the nomenclature committee of the International Society of Amyloidosis. Amyloid 17(3–4):101–104

    CAS  PubMed  Google Scholar 

  • Smith PE, Brender JR, Ramamoorthy A (2009) Induction of negative curvature as a mechanism of cell toxicity by amyloidogenic peptides: the case of islet amyloid polypeptide. J Am Chem Soc 131(12):4470–4478

    CAS  PubMed Central  PubMed  Google Scholar 

  • Susa AC, Wu C, Bernstein SL, Dupuis NF, Wang H, Raleigh DP et al (2014) Defining the molecular basis of amyloid inhibitors: human islet amyloid polypeptide-insulin interactions. J Am Chem Soc 136(37):12912–12919

    CAS  PubMed  Google Scholar 

  • Trikha S, Jeremic AM (2011) Clustering and internalization of toxic amylin oligomers in pancreatic cells require plasma membrane cholesterol. J Biol Chem 286(41):36086–36097

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trikha S, Jeremic AM (2013) Distinct internalization pathways of human amylin monomers and its cytotoxic oligomers in pancreatic cells. PLoS One 8(9):e73080

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tu LH, Raleigh DP (2013) Role of aromatic interactions in amyloid formation by islet amyloid polypeptide. Biochemistry 52(2):333–342

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagoner PK, Chen C, Worley JF, Dukes ID, Oxford GS (1993) Amylin modulates beta-cell glucose sensing via effects on stimulus-secretion coupling. Proc Natl Acad Sci U S A 90(19):9145–9149

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang J, Xu J, Finnerty J, Furuta M, Steiner DF, Verchere CB (2001) The prohormone convertase enzyme 2 (PC2) is essential for processing pro-islet amyloid polypeptide at the NH2-terminal cleavage site. Diabetes 50(3):534–539

    CAS  PubMed  Google Scholar 

  • Westermark P, Wernstedt C, Wilander E, Sletten K (1986) A novel peptide in the calcitonin gene related peptide family as an amyloid fibril protein in the endocrine pancreas. Biochem Biophys Res Commun 140(3):827–831

    CAS  PubMed  Google Scholar 

  • Westermark P, Engstrom U, Johnson KH, Westermark GT, Betsholtz C (1990) Islet amyloid polypeptide: pinpointing amino acid residues linked to amyloid fibril formation. Proc Natl Acad Sci U S A 87(13):5036–5040

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westermark G, Westermark P, Eizirik DL, Hellerstrom C, Fox N, Steiner DF et al (1999) Differences in amyloid deposition in islets of transgenic mice expressing human islet amyloid polypeptide versus human islets implanted into nude mice. Metabolism 48(4):448–454

    CAS  PubMed  Google Scholar 

  • Westermark P, Andersson A, Westermark GT (2011) Islet amyloid polypeptide, islet amyloid, and diabetes mellitus. Physiol Rev 91(3):795–826

    CAS  PubMed  Google Scholar 

  • Williamson R, Usardi A, Hanger DP, Anderton BH (2008) Membrane-bound beta-amyloid oligomers are recruited into lipid rafts by a fyn-dependent mechanism. FASEB J 22(5):1552–1559

    CAS  PubMed  Google Scholar 

  • Wiltzius JJ, Sievers SA, Sawaya MR, Cascio D, Popov D, Riekel C et al (2008) Atomic structure of the cross-beta spine of islet amyloid polypeptide (amylin). Protein Sci 17(9):1467–1474

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wookey PJ, Lutz TA, Andrikopoulos S (2006) Amylin in the periphery II: an updated mini-review. Sci World J 6:1642–1655

    CAS  Google Scholar 

  • Young A, Denaro M (1998) Roles of amylin in diabetes and in regulation of nutrient load. Nutrition 14(6):524–527

    CAS  PubMed  Google Scholar 

  • Zhang S, Liu J, Dragunow M, Cooper GJ (2003) Fibrillogenic amylin evokes islet beta-cell apoptosis through linked activation of a caspase cascade and JNK1. J Biol Chem 278(52):52810–52819

    CAS  PubMed  Google Scholar 

  • Zhang S, Liu H, Chuang CL, Li X, Au M, Zhang L et al (2014) The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet beta cells. FASEB J 28(12):5083–5096

    CAS  PubMed  Google Scholar 

  • Zhao H, Tuominen EK, Kinnunen PK (2004) Formation of amyloid fibers triggered by phosphatidylserine-containing membranes. Biochemistry 43(32):10302–10307

    CAS  PubMed  Google Scholar 

  • Zhao H, Jutila A, Nurminen T, Wickstrom SA, Keski-Oja J, Kinnunen PK (2005) Binding of endostatin to phosphatidylserine-containing membranes and formation of amyloid-like fibers. Biochemistry 44(8):2857–2863

    CAS  PubMed  Google Scholar 

  • Zhao Q, Jayawardhana D, Guan X (2008) Stochastic study of the effect of ionic strength on non covalent interactions in protein pores. Biophys J 94(4):1267–1275

    Google Scholar 

  • Zhao J, Hu R, Sciacca MF, Brender JR, Chen H, Ramamoorthy A et al (2014) Non-selective ion channel activity of polymorphic human islet amyloid polypeptide (amylin) double channels. Phys Chem Chem Phys 16(6):2368–2377

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by the NIH grant RO1DK091845 and the ICR Basic Science Islet Distribution Program (to A.J.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandar M. Jeremic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Singh, S., Trikha, S., Bhowmick, D.C., Sarkar, A.A., Jeremic, A.M. (2015). Role of Cholesterol and Phospholipids in Amylin Misfolding, Aggregation and Etiology of Islet Amyloidosis. In: Gursky, O. (eds) Lipids in Protein Misfolding. Advances in Experimental Medicine and Biology, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-17344-3_4

Download citation

Publish with us

Policies and ethics