Skip to main content

Emergent Properties and Functions of Nanoconfined Nucleic Acid Architectures

  • Chapter
RNA and DNA Diagnostics

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

The facile ability of DNA to self-assemble has enabled the creation of complex architectures with diverse functions on surfaces or in solution. This approach provides a powerful design tool for the development of nanoscale devices with transformative applications in multiple areas, including the detection of complex biomolecules, drug delivery, and in situ biomolecular synthesis. However, little is known of the effect of confinement on the function of complex nucleic acid architectures, which exhibit unanticipated behaviors that presumably reflect high-level molecular crowding. In this chapter, we review selected recent studies that describe the application and atypical behaviors of nanoconfined nucleic acids, in particular with respect to hybridization, denaturation, conformation, stability, and enzyme accessibility. We argue that the novel behavior of dense nucleic acid arrays naturally emerge as a result of immobilization and reduction in spatial degrees of freedom. We summarize by emphasizing the need for basic physical–chemical studies of dense nucleic acid architectures, involving an interplay of experimental and theoretical approaches, in order to effectively guide the successful technological development of nucleic acid nanodevices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Acuna GP, Möller FM, Holzmeister P et al (2012) Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338:506–510

    Article  CAS  PubMed  Google Scholar 

  • Akbulut O, Yu AA, Stellacci F (2010) Fabrication of biomolecular devices via supramolecular contact-based approaches. Chem Soc Rev 39:30–37

    Article  CAS  PubMed  Google Scholar 

  • Arbona JM, Aimé J-P, Elezgaray J (2012a) Folding of small origamis. J Chem Phys 136:065102

    Article  PubMed  Google Scholar 

  • Arbona JM, Aimé J-P, Elezgaray J (2012b) Modeling the mechanical properties of DNA nanostructures. Phys Rev E 86:051912

    Article  Google Scholar 

  • Bancaud A, Huet S, Daigle N et al (2009) Molecular crowding affects diffusion and binding of nuclear proteins in heterochromatin and reveals the fractal organization of chromatin. EMBO J 28:3785–3798

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bano F, Fruk L, Sanavio B et al (2009) Toward multiprotein nanoarrays using nanografting and DNA directed immobilization of proteins. Nano Lett 9:2614–2618

    Article  CAS  PubMed  Google Scholar 

  • Bar M, Bar-Ziv RH (2009) Spatially resolved DNA brushes on a chip: gene activation by enzymatic cascade. Nano Lett 9:4462–4466

    Article  CAS  PubMed  Google Scholar 

  • Bates M, Huang B, Dempsey GT et al (2007) Multicolor super-resolution imaging with photo-switchable fluorescent probes. Science 317:1749–1753

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biagiotti V, Porchetta A, Desiderati S et al (2012) Probe accessibility effects on the performance of electrochemical biosensors employing DNA monolayers. Anal Bioanal Chem 402:413–421

    Article  CAS  PubMed  Google Scholar 

  • Bombelli FB, Betti F, Gambinossi F et al (2009) Closed nanoconstructs assembled by step-by-step ssDNA coupling assisted by phospholipid membranes. Soft Matter 5:1639–1645

    Article  Google Scholar 

  • Bosco A, Bano F, Parisse P et al (2012) Hybridization in nanostructured DNA monolayers probed by AFM: theory versus experiment. Nanoscale 4:1734–1741

    Article  CAS  PubMed  Google Scholar 

  • Buxboim A, Daube SS, Bar-Ziv R (2008) Synthetic gene brushes: a structure-function relationship. Mol Syst Biol 4:1–8

    Article  Google Scholar 

  • Carmon A, Vision TJ, Mitchell SE et al (2002) Solid-phase PCR in microwells: effects of linker length and composition on tethering hybridization, and extension. Biotechniques 32:410–420

    CAS  PubMed  Google Scholar 

  • Castelino K, Kannan B, Majumdar A (2005) Characterization of grafting density and binding efficiency of DNA and proteins on gold surfaces. Langmuir 21:1956–1961

    Article  CAS  PubMed  Google Scholar 

  • Castro CE, Kilchherr F, Kim D-N et al (2011) A primer to scaffolded DNA origami. Nat Methods 8:221–229

    Article  CAS  PubMed  Google Scholar 

  • Castronovo M, Radovic S, Grunwald C et al (2008) Control of steric hindrance on restriction enzyme reactions with surface-bound DNA nanostructures. Nano Lett 8:4140–4145

    Article  CAS  PubMed  Google Scholar 

  • Castronovo M, Lucesoli A, Parisse P et al (2011) Two-dimensional enzyme diffusion in laterally confined DNA monolayers. Nat Commun 2:1–10

    Article  Google Scholar 

  • Chen J, Seeman NC (1991) Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350:631–633

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Wang W, Ge J et al (2009) Kinetics and thermodynamics of DNA hybridization on gold nanoparticles. Nucleic Acids Res 37:3756–3765

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    Article  CAS  PubMed  Google Scholar 

  • Eid J, Fehr A, Gray J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323:133–138

    Article  CAS  PubMed  Google Scholar 

  • Feldkamp U, Niemeyer CM (2006) Rational design of DNA nanoarchitectures. Angew Chem Int Ed 45:1856–1876

    Article  CAS  Google Scholar 

  • Franco E, Friedrichs E, Kim J et al (2011) Timing molecular motion and production with a synthetic transcriptional clock. Proc Natl Acad Sci USA 108:E784–E793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ghosh D, Lee Y, Thomas S et al (2012) M13-templated magnetic nanoparticles for targeted in vivo imaging of prostate cancer. Nat Nanotechnol 7:677–682

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gifford LK, Sendroiu IE, Corn RM et al (2010) Attomole detection of mesophilic DNA polymerase products by nanoparticle-enhanced surface plasmon resonance imaging on glassified gold surfaces. J Am Chem Soc 132:9265–9267

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Han J, Craighead HG (2000) Separation of long DNA molecules in a microfabricated entropic trap array. Science 288:1026–1029

    Article  CAS  PubMed  Google Scholar 

  • Heyman Y, Buxboim A, Wolf SG et al (2012) Cell-free protein synthesis and assembly on a biochip. Nat Nanotechnol 7:374–378

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Das A, Hecht MH et al (2005) Nanografting de novo proteins onto gold surfaces. Langmuir 21:9103–9109

    Article  CAS  PubMed  Google Scholar 

  • Huang J, MacKerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34:2135–2145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hubbell JA, Chilkoti A (2012) Nanomaterials for drug delivery. Science 337:303–305

    Article  PubMed  Google Scholar 

  • Jiang Q, Song C, Nangreave J et al (2012) DNA origami as a carrier for circumvention of drug resistance. J Am Chem Soc 134:13396–13403

    Article  CAS  PubMed  Google Scholar 

  • Jonkheijm P, Weinrich D, Schröder H et al (2008) Chemical strategies for generating protein biochips. Angew Chem Int Ed 47:9618–9647

    Article  CAS  Google Scholar 

  • Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79:926–935

    Article  CAS  Google Scholar 

  • Josephs EA, Ye T (2013) Nanoscale spatial distribution of thiolated DNA on model nucleic acid sensor surfaces. ACS Nano 7:3653–3660

    Article  CAS  PubMed  Google Scholar 

  • Jungmann R, Avendano MS, Woehrstein JB et al (2014) Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and exchange-PAINT. Nat Methods 11:313–318

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ke YG, Lindsay S, Chang Y et al (2008) Self-assembled water-soluble nucleic acid probe tiles for label-free RNA hybridization assays. Science 319:180–183

    Article  CAS  PubMed  Google Scholar 

  • Ke Y, Douglas SM, Liu M et al (2009) Multilayer DNA origami packed on a square lattice. J Am Chem Soc 131:15903–15908

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ke Y, Ong LL, Shih WM et al (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338:1177–1183

    Article  CAS  PubMed  Google Scholar 

  • Keum J-W, Bermudez H (2009) Enhanced resistance of DNA nanostructures to enzymatic digestion. Chem Commun 7036–7038

    Google Scholar 

  • Krishnan Y, Simmel FC (2011) Nucleic acid based molecular devices. Angew Chem Int Ed 50:3124–3156

    Article  CAS  Google Scholar 

  • Kukolka F, Schoeps O, Woggon U et al (2007) DNA-directed assembly of supramolecular fluorescent protein energy transfer systems. Bioconjug Chem 18:621–627

    Article  CAS  PubMed  Google Scholar 

  • Kuzyk A, Laitinen KT, Torma P (2009) DNA origami as a nanoscale template for protein assembly. Nanotechnology 20:1–5

    Article  Google Scholar 

  • Kuzyk A, Schreiber R, Fan Z et al (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314

    Article  CAS  PubMed  Google Scholar 

  • Lavella GJ, Jadhav AD, Maharbiz MM (2012) A synthetic chemomechanical machine driven by ligand–receptor bonding. Nano Lett 12:4983–4987

    Article  CAS  PubMed  Google Scholar 

  • Lee H, Lytton-Jean AKR, Chen Y et al (2012) Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery. Nat Nanotechnol 7:389–393

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Levicky R, Herne TM, Tarlov MJ et al (1998) Using self-assembly to control the structure of DNA monolayers on gold: a neutron reflectivity study. J Am Chem Soc 120:9787–9792

    Article  CAS  Google Scholar 

  • Liang J, Castronovo M, Scoles G (2011) DNA as invisible ink for AFM nanolithography. J Am Chem Soc 134:39–42

    Article  PubMed  Google Scholar 

  • Lin C, Jungmann R, Leifer AM et al (2012) Submicrometre geometrically encoded fluorescent barcodes self-assembled from DNA. Nat Chem 4:832–839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu QH, Wang LM, Frutos AG et al (2000) DNA computing on surfaces. Nature 403:175–179

    Article  CAS  PubMed  Google Scholar 

  • Lizana L, Konkoli Z, Bauer B et al (2009) Controlling chemistry by geometry in nanoscale systems. Annu Rev Phys Chem 60:449–468

    Article  CAS  PubMed  Google Scholar 

  • Lund K, Manzo AJ, Dabby N et al (2010) Molecular robots guided by prescriptive landscapes. Nature 465:206–210

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McCalla SE, Luryi AL, Tripathi A (2009) Steric effects and mass-transfer limitations surrounding amplification reactions on immobilized long and clinically relevant DNA templates. Langmuir 25:6168–6175

    Article  CAS  PubMed  Google Scholar 

  • McGuffee SR, Elcock AH (2010) Diffusion, crowding & protein stability in a dynamic molecular model of the bacterial cytoplasm. PLoS Comput Biol 6:1–18

    Article  Google Scholar 

  • Mei Q, Wei X, Su F et al (2011) Stability of DNA origami nanoarrays in cell lysate. Nano Lett 11:1477–1482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Metzker ML (2010) Sequencing technologies—the next generation. Nat Rev Genet 11:31–46

    Article  CAS  PubMed  Google Scholar 

  • Meyer R, Niemeyer CM (2011) Orthogonal protein decoration of DNA nanostructures. Small 7:3211–3218

    Article  CAS  PubMed  Google Scholar 

  • Minton AP (2006) How can biochemical reactions within cells differ from those in test tubes? J Cell Sci 119:2863–2869

    Article  CAS  PubMed  Google Scholar 

  • Mirmomtaz E, Castronovo M, Grunwald C et al (2008) Quantitative study of the effect of coverage on the hybridization efficiency of surface-bound DNA nanostructures. Nano Lett 8:4134–4139

    Article  CAS  PubMed  Google Scholar 

  • Miyoshi D, Sugimoto N (2008) Molecular crowding effects on structure and stability of DNA. Target DNA Part 1(90):1040–1051

    Google Scholar 

  • Nanguneri S, Flottmann B, Horstmann H et al (2012) Three-dimensional, tomographic super-resolution fluorescence imaging of serially sectioned thick samples. PLoS One 7:e38098

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Niemeyer CM (2010) Semisynthetic DNA-protein conjugates for biosensing and nanofabrication. Angew Chem Int Ed 49:1200–1216

    Article  CAS  Google Scholar 

  • Palanisamy R, Connolly AR, Trau M (2010) Considerations of solid-phase DNA amplification. Bioconjug Chem 21:690–695

    Article  CAS  PubMed  Google Scholar 

  • Parisse P, Vindigni A, Scoles G et al (2012) In vitro enzyme comparative kinetics: unwinding of surface-bound DNA nanostructures by RecQ and RecQ1. J Phys Chem Lett 3:3532–3537

    Article  CAS  Google Scholar 

  • Park S, Brown KA, Hamad-Schifferli K (2004) Changes in oligonucleotide conformation on nanoparticle surfaces by modification with mercaptohexanol. Nano Lett 4:1925–1929

    Article  CAS  Google Scholar 

  • Peled D, Daube SS, Naaman R (2008) Selective enzymatic labeling to detect packing-induced denaturation of double-stranded DNA at interfaces. Langmuir 24:11842–11846

    Article  CAS  PubMed  Google Scholar 

  • Peled D, Naaman R, Daube SS (2010) Packed DNA denatures on gold nanoparticles. J Phys Chem B 114:8581–8584

    Article  CAS  PubMed  Google Scholar 

  • Peterson AW, Heaton RJ, Georgiadis RM (2001) The effect of surface probe density on DNA hybridization. Nucleic Acids Res 29:5163–5168

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinheiro AV, Han D, Shih WM et al (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pinheiro AV, Nangreave J, Jiang S et al (2012) Steric crowding and the kinetics of DNA hybridization within a DNA nanostructure system. ACS Nano 6:5521–5530

    Article  CAS  PubMed  Google Scholar 

  • Reisner W, Morton KJ, Riehn R et al (2005) Statics and dynamics of single DNA molecules confined in nanochannels. Phys Rev Lett 94:196101

    Article  PubMed  Google Scholar 

  • Reisner W, Larsen NB, Silahtaroglu A et al (2010) Single-molecule denaturation mapping of DNA in nanofluidic channels. Proc Natl Acad Sci USA 107:13294–13299

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ricci F, Lai RY, Heeger AJ et al (2007) Effect of molecular crowding on the response of an electrochemical DNA sensor. Langmuir 23:6827–6834

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rinker S, Ke Y, Liu Y et al (2008) Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat Nanotechnol 3:418–422

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  • Sacca B, Niemeyer CM (2012) DNA origami: the art of folding DNA. Angew Chem Int Ed 51:58–66

    Article  CAS  Google Scholar 

  • Sanavio B, Scaini D, Grunwald C et al (2010) Oriented immobilization of prion protein demonstrated via precise interfacial nanostructure measurements. ACS Nano 4:6607–6616

    Article  CAS  PubMed  Google Scholar 

  • Sasaki Y, Miyoshi D, Sugimoto N (2007) Regulation of DNA nucleases by molecular crowding. Nucleic Acids Res 35:4086–4093

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seelig G, Soloveichik D, Zhang DY et al (2006) Enzyme-free nucleic acid logic circuits. Science 314:1585–1588

    Article  CAS  PubMed  Google Scholar 

  • Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    Article  CAS  PubMed  Google Scholar 

  • Seeman NC (1990) De novo design of sequences for nucleic acid structural engineering. J Biomol Struct Dyn 8:573–581

    Article  CAS  PubMed  Google Scholar 

  • Seferos DS, Prigodich AE, Giljohann DA et al (2009) Polyvalent DNA nanoparticle conjugates stabilize nucleic acids. Nano Lett 9:308–311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shaw A, Lundin V, Petrova E et al (2014) Spatial control of membrane receptor function using ligand nanocalipers. Nat Methods 11:841–846

    Article  CAS  PubMed  Google Scholar 

  • Staii C, Wood DW, Scoles G (2008) Ligand-induced structural changes in maltose binding proteins measured by atomic force microscopy. Nano Lett 8:2503–2509

    Article  CAS  PubMed  Google Scholar 

  • Steel AB, Levicky RL, Herne TM et al (2000) Immobilization of nucleic acids at solid surfaces: effect of oligonucleotide length on layer assembly. Biophys J 79:975–981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stein IH, Schueller V, Boehm P et al (2011a) Single-molecule FRET ruler based on rigid DNA origami blocks. Chemphyschem 12:689–695

    Article  CAS  PubMed  Google Scholar 

  • Stein IH, Steinhauer C, Tinnefeld P (2011b) Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. J Am Chem Soc 133:4193–4195

    Article  CAS  PubMed  Google Scholar 

  • Tegenfeldt JO, Prinz C, Cao H et al (2004) The dynamics of genomic-length DNA molecules in 100-nm channels. Proc Natl Acad Sci USA 101:10979–10983

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Venkatesan BM, Bashir R (2011) Nanopore sensors for nucleic acid analysis. Nat Nanotechnol 6:615–624

    Article  CAS  PubMed  Google Scholar 

  • Voigt NV, Torring T, Rotaru A et al (2010) Single-molecule chemical reactions on DNA origami. Nat Nanotechnol 5:200–203

    Article  CAS  PubMed  Google Scholar 

  • Walsh AS, Yin H, Erben CM et al (2011) DNA cage delivery to mammalian cells. ACS Nano 5:5427–5432

    Article  CAS  PubMed  Google Scholar 

  • Woo S, Rothemund PWK (2011) Programmable molecular recognition based on the geometry of DNA nanostructures. Nat Chem 3:620–627

    Article  CAS  PubMed  Google Scholar 

  • Yoo J, Aksimentiev A (2013) In situ structure and dynamics of DNA origami determined through molecular dynamics simulations. Proc Natl Acad Sci USA 110:20099–20104

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao Y-X, Shaw A, Zeng X et al (2012) DNA origami delivery system for cancer therapy with tunable release properties. ACS Nano 6:8684–8691

    Article  CAS  PubMed  Google Scholar 

  • Zhou W-J, Chen Y, Corn RM (2011) Ultrasensitive microarray detection of short RNA sequences with enzymatically modified nanoparticles and surface plasmon resonance imaging measurements. Anal Chem 83:3897–3902

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Studies in the authors’ laboratories were supported in part by the College of Science and Technology of Temple University (A.W.N., S.K.R., V.C., and M.C.), the NIH (RO1-GM56772) (A.W.N), and the European Research Council (Grant ERC Ideas 2010 n. 269051-Monalisa’s Quidproquo) (A.S., L.C., and M.C.).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Castronovo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nicholson, A.W., Redhu, S.K., Stopar, A., Coral, L., Carnevale, V., Castronovo, M. (2015). Emergent Properties and Functions of Nanoconfined Nucleic Acid Architectures. In: Erdmann, V., Jurga, S., Barciszewski, J. (eds) RNA and DNA Diagnostics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-17305-4_9

Download citation

Publish with us

Policies and ethics