Skip to main content

Aptamers in Oncotherapy

  • Chapter
RNA and DNA Diagnostics

Part of the book series: RNA Technologies ((RNATECHN))

Abstract

The ability of oligonucleotide aptamers to bind with high affinity and specificity, as well as their ease of production, has made them great candidates for their use as potential drugs, probes, or delivery agents. In this chapter, we will cover three novel biological applications incorporating the use of aptamers in therapeutics. First, we will discuss the most recent advancements in the use of these short oligonucleotides for targeted delivery of small molecules and biomolecules, such as drugs and microRNAs, in order to achieve tumor suppression. The second focus will be on the use of aptamers to image specific types of cells when coupled with nanoparticles, allowing in vivo detection of tumors, while bypassing the issue of aptamer degradation. Finally, we will discuss the use of aptamers that act upon infectious agents, either to eliminate those that are malignant or to protect the useful ones. Oncolytic viruses are such useful infectious agents and form an emerging cancer treatment featuring tumor-specific replication, leading to cell lysis. One of the biggest setbacks for this type of therapy is viral clearance by neutralizing antibodies. Aptamers can be turned into tools for protecting oncolytic viruses from the immune system and to assist higher specificity in targeting cancerous cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Polypeptides form another class of aptamers whose selection and propagation differs greatly from oligonucleotide aptamers. In this chapter, we will only consider the latter class of aptamers.

References

  • Aldaye FA, Sleiman HF (2007) Modular access to structurally switchable 3D discrete DNA assemblies. J Am Chem Soc 129:13376–13377

    Article  CAS  PubMed  Google Scholar 

  • Amarzguioui M, Rossi JJ (2008) Principles of Dicer substrate (D-siRNA) design and function. Methods Mol Biol 442:3–10

    CAS  PubMed  Google Scholar 

  • Ashworth TR (1869) A case of cancer in which cells similar to those in the tumors were seen in the blood after death. Aust Med J 12:3

    Google Scholar 

  • Bates PJ, Laber DA, Miller DM et al (2009) Discovery and development of the G-rich oligonucleotide AS1411 as a novel treatment for cancer. Exp Mol Pathol 86:151–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Binning JM, Wang T, Luthra P et al (2013) Development of RNA aptamers targeting Ebola virus VP35. Biochemistry 52:8406–8419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Breitbach CJ, Burke J, Jonker D et al (2011) Intravenous delivery of a multi-mechanistic cancer-targeted oncolytic poxvirus in humans. Nature 477:99–102

    Article  CAS  PubMed  Google Scholar 

  • Bruno JG, Carrillo MP, Phillips T et al (2010) A novel screening method for competitive FRET-aptamers applied to E. coli assay development. J Fluoresc 20:1211–1223

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Li S, Chen L et al (2009) Combining use of a panel of ssDNA aptamers in the detection of Staphylococcus aureus. Nucleic Acids Res 37:4621–4628

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cerchia L, Esposito CL, Camorani S et al (2012) Targeting Axl with an high-affinity inhibitory aptamer. Mol Ther 20:2291–2303

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Charoenphol P, Bermudez H (2014) Aptamer-targeted DNA nanostructures for therapeutic delivery. Mol Pharm 11:1721–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen Y, Yu DC, Charlton D et al (2000) Pre-existent adenovirus antibody inhibits systemic toxicity and antitumor activity of CN706 in the nude mouse LNCaP xenograft model: implications and proposals for human therapy. Hum Gene Ther 11:1553–1567

    Article  CAS  PubMed  Google Scholar 

  • Cosmi B (2009) ARC-1779, a PEGylated aptamer antagonist of von Willebrand factor for potential use as an anticoagulant or antithrombotic agent. Curr Opin Mol Ther 11:322–328

    CAS  PubMed  Google Scholar 

  • Coukos G, Makrigiannakis A, Kang EH et al (1999) Use of carrier cells to deliver a replication-selective herpes simplex virus-1 mutant for the intraperitoneal therapy of epithelial ovarian cancer. Clin Cancer Res 5:1523–1537

    CAS  PubMed  Google Scholar 

  • D’Atri V, Oliviero G, Amato J et al (2012) New anti-HIV aptamers based on tetra-end-linked DNA G-quadruplexes: effect of the base sequence on anti-HIV activity. Chem Commun (Camb) 48:9516–9518

    Article  Google Scholar 

  • Dassie JP, Liu XY, Thomas GS et al (2009) Systemic administration of optimized aptamer-siRNA chimeras promotes regression of PSMA-expressing tumors. Nat Biotechnol 27:839–849

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edwardson TG, Carneiro KM, McLaughlin CK et al (2013) Site-specific positioning of dendritic alkyl chains on DNA cages enables their geometry-dependent self-assembly. Nat Chem 5:868–875

    Article  CAS  PubMed  Google Scholar 

  • Esposito CL, Cerchia L, Catuogno S et al (2014) Multifunctional aptamer-miRNA conjugates for targeted cancer therapy. Mol Ther 22:1151–1163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fang Y, Guo S, Li D et al (2012) Easy synthesis and imaging applications of cross-linked green fluorescent hollow carbon nanoparticles. ACS Nano 6:400–409

    Article  CAS  PubMed  Google Scholar 

  • Fire A, Xu SQ (1995) Rolling replication of short DNA circles. Proc Natl Acad Sci USA 92:4641–4645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fisher KD, Stallwood Y, Green NK et al (2001) Polymer-coated adenovirus permits efficient retargeting and evades neutralising antibodies. Gene Ther 8:341–348

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Castro J, Martinez-Palacio J, Lillo R et al (2005) Tumor cells as cellular vehicles to deliver gene therapies to metastatic tumors. Cancer Gene Ther 12:341–349

    Article  CAS  PubMed  Google Scholar 

  • Group VISiONCT, D’Amico DJ, Masonson HN, Patel M et al (2006) Pegaptanib sodium for neovascular age-related macular degeneration: two-year safety results of the two prospective, multicenter, controlled clinical trials. Ophthalmology 113(992–1001):e6

    Google Scholar 

  • Guo Z, Ren J, Wang J et al (2011) Single-walled carbon nanotubes based quenching of free FAM-aptamer for selective determination of ochratoxin A. Talanta 85:2517–2521

    Article  CAS  PubMed  Google Scholar 

  • Hamblin GD, Carneiro KM, Fakhoury JF et al (2012) Rolling circle amplification-templated DNA nanotubes show increased stability and cell penetration ability. J Am Chem Soc 134:2888–2891

    Article  CAS  PubMed  Google Scholar 

  • Hirasawa K, Nishikawa SG, Norman KL et al (2003) Systemic reovirus therapy of metastatic cancer in immune-competent mice. Cancer Res 63:348–353

    CAS  PubMed  Google Scholar 

  • Hu R, Zhang X, Zhao Z et al (2014) DNA nanoflowers for multiplexed cellular imaging and traceable targeted drug delivery. Angew Chem 53:5821–5826

    Article  CAS  Google Scholar 

  • Ikeda K, Ichikawa T, Wakimoto H et al (1999) Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 5:881–887

    Article  CAS  PubMed  Google Scholar 

  • Jalalian SH, Taghdisi SM, Shahidi Hamedani N et al (2013) Epirubicin loaded super paramagnetic iron oxide nanoparticle-aptamer bioconjugate for combined colon cancer therapy and imaging in vivo. Eur J Pharm Sci 50:191–197

    Article  CAS  PubMed  Google Scholar 

  • Jeon SH, Kayhan B, Ben-Yedidia T et al (2004) A DNA aptamer prevents influenza infection by blocking the receptor binding region of the viral hemagglutinin. J Biol Chem 279:48410–48419

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J et al (2005) RAS is regulated by the let-7 microRNA family. Cell 120:635–647

    Article  CAS  PubMed  Google Scholar 

  • Juul S, Iacovelli F, Falconi M et al (2013) Temperature-controlled encapsulation and release of an active enzyme in the cavity of a self-assembled DNA nanocage. ACS Nano 7:9724–9734

    Article  CAS  PubMed  Google Scholar 

  • Kang WJ, Chae JR, Cho YL et al (2009) Multiplex imaging of single tumor cells using quantum-dot-conjugated aptamers. Small 5:2519–2522

    Article  CAS  PubMed  Google Scholar 

  • Kanwar JR, Roy K, Kanwar RK (2011) Chimeric aptamers in cancer cell-targeted drug delivery. Crit Rev Biochem Mol Biol 46:459–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Morgan R, Dahlbeck D et al (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci USA 103:18002–18007

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kim YS, Niazi JH, Chae YJ et al (2011) Aptamers-in-liposomes for selective and multiplexed capture of small organic compounds. Macromol Rapid Commun 32:1169–1173

    Article  CAS  PubMed  Google Scholar 

  • Kling J (2012) Beyond counting tumor cells. Nat Biotechnol 30:578–580

    Article  CAS  PubMed  Google Scholar 

  • Kolovskaya OS, Savitskaya AG, Zamay TN et al (2013) Development of bacteriostatic DNA aptamers for Salmonella. J Med Chem 56:1564–1572

    Article  CAS  PubMed  Google Scholar 

  • Kottke T, Pulido J, Thompson J et al (2009) Antitumor immunity can be uncoupled from autoimmunity following heat shock protein 70-mediated inflammatory killing of normal pancreas. Cancer Res 69:7767–7774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Labib M, Zamay AS, Muharemagic D et al (2012a) Electrochemical sensing of aptamer-facilitated virus immunoshielding. Anal Chem 84:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Labib M, Zamay AS, Muharemagic D et al (2012b) Electrochemical differentiation of epitope-specific aptamers. Anal Chem 84:2548–2556

    Article  CAS  PubMed  Google Scholar 

  • Lang SI, Giese NA, Rommelaere J et al (2006) Humoral immune responses against minute virus of mice vectors. J Gene Med 8:1141–1150

    Article  CAS  PubMed  Google Scholar 

  • Lau KL, Hamblin GD, Sleiman HF (2014) Gold nanoparticle 3D-DNA building blocks: high purity preparation and use for modular access to nanoparticle assemblies. Small 10:660–666

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Dutta A (2007) The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. Genes Dev 21:1025–1030

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Ye X, Tan C et al (2009) Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene 28:3442–3455

    Article  CAS  PubMed  Google Scholar 

  • Liang HR, Liu Q, Zheng XX et al (2013) Aptamers targeting rabies virus-infected cells inhibit viral replication both in vitro and in vivo. Virus Res 173:398–403

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Xu Y, Wen S et al (2013) Targeted tumor computed tomography imaging using low-generation dendrimer-stabilized gold nanoparticles. Chemistry 19:6409–6416

    Article  CAS  PubMed  Google Scholar 

  • Mader EK, Maeyama Y, Lin Y et al (2009) Mesenchymal stem cell carriers protect oncolytic measles viruses from antibody neutralization in an orthotopic ovarian cancer therapy model. Clin Cancer Res 15:7246–7255

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maeng JS, Kim N, Kim CT et al (2012) Rapid detection of food pathogens using RNA aptamers-immobilized slide. J Nanosci Nanotechnol 12:5138–5142

    Article  CAS  PubMed  Google Scholar 

  • McKeague M, Derosa MC (2012) Challenges and opportunities for small molecule aptamer development. J Nucleic Acids 2012:748913

    Article  PubMed Central  PubMed  Google Scholar 

  • McNamara JO II, Andrechek ER, Wang Y et al (2006) Cell type-specific delivery of siRNAs with aptamer-siRNA chimeras. Nat Biotechnol 24:1005–1015

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto D, Tang Z, Takarada T et al (2007) Turbidimetric detection of ATP using polymeric micelles and DNA aptamers. Chem Commun (Camb) 45:4743–4745

    Article  Google Scholar 

  • Morrison J, Briggs SS, Green N et al (2008) Virotherapy of ovarian cancer with polymer-cloaked adenovirus retargeted to the epidermal growth factor receptor. Mol Ther 16:244–251

    Article  CAS  PubMed  Google Scholar 

  • Muharemagic D, Labib M, Ghobadloo SM et al (2012) Anti-Fab aptamers for shielding virus from neutralizing antibodies. J Am Chem Soc 134:17168–17177

    Article  CAS  PubMed  Google Scholar 

  • Muharemagic D, Zamay A, Ghobadloo SM et al (2014) Aptamer-facilitated protection of oncolytic virus from neutralizing antibodies. Mol Ther Nucleic Acids 3:e167

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ninichuk V, Clauss S, Kulkarni O et al (2008) Late onset of Ccl2 blockade with the Spiegelmer mNOX-E36-3′PEG prevents glomerulosclerosis and improves glomerular filtration rate in db/db mice. Am J Pathol 172:628–637

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O’Riordan CR, Lachapelle A, Delgado C et al (1999) PEGylation of adenovirus with retention of infectivity and protection from neutralizing antibody in vitro and in vivo. Hum Gene Ther 10:1349–1358

    Article  PubMed  Google Scholar 

  • Parato KA, Senger D, Forsyth PA et al (2005) Recent progress in the battle between oncolytic viruses and tumours. Nat Rev Cancer 5:965–976

    Article  CAS  PubMed  Google Scholar 

  • Perkel JM (2009) RNAi therapeutics: a two-year update. Science 326:3

    Article  Google Scholar 

  • Power AT, Wang J, Falls TJ et al (2007) Carrier cell-based delivery of an oncolytic virus circumvents antiviral immunity. Mol Ther 15:123–130

    Article  CAS  PubMed  Google Scholar 

  • Rothemund PW (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  • Russell SJ, Peng KW (2007) Viruses as anticancer drugs. Trends Pharmacol Sci 28:326–333

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sheng W, Chen T, Tan W et al (2013) Multivalent DNA nanospheres for enhanced capture of cancer cells in microfluidic devices. ACS Nano 7:7067–7076

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shi S, Yu X, Gao Y et al (2014) Inhibition of hepatitis C virus production by aptamers against the core protein. J Virol 88:1990–1999

    Article  PubMed Central  PubMed  Google Scholar 

  • So HM, Park DW, Jeon EK et al (2008) Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 4:197–201

    Article  CAS  PubMed  Google Scholar 

  • Soundararajan S, Wang L, Sridharan V et al (2009) Plasma membrane nucleolin is a receptor for the anticancer aptamer AS1411 in MV4-11 leukemia cells. Mol Pharmacol 76:984–991

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wakimoto H, Ikeda K, Abe T et al (2002) The complement response against an oncolytic virus is species-specific in its activation pathways. Mol Ther 5:275–282

    Article  CAS  PubMed  Google Scholar 

  • Wang YX, Hussain SM, Krestin GP (2001) Superparamagnetic iron oxide contrast agents: physicochemical characteristics and applications in MR imaging. Eur Radiol 11:2319–2331

    Article  CAS  PubMed  Google Scholar 

  • Waters EK, Genga RM, Schwartz MC et al (2011) Aptamer ARC19499 mediates a procoagulant hemostatic effect by inhibiting tissue factor pathway inhibitor. Blood 117:5514–5522

    Article  CAS  PubMed  Google Scholar 

  • Willis MC, Collins BD, Zhang T et al (1998) Liposome-anchored vascular endothelial growth factor aptamers. Bioconjug Chem 9:573–582

    Article  CAS  PubMed  Google Scholar 

  • Wong MP (2012) Circulating tumor cells as lung cancer biomarkers. J Thorac Dis 4:631–634

    PubMed Central  PubMed  Google Scholar 

  • Worgall S, Wolff G, Falck-Pedersen E et al (1997) Innate immune mechanisms dominate elimination of adenoviral vectors following in vivo administration. Hum Gene Ther 8:37–44

    Article  CAS  PubMed  Google Scholar 

  • Wu P, He X, Wang K et al (2008) Imaging breast cancer cells and tissues using peptide-labeled fluorescent silica nanoparticles. J Nanosci Nanotechnol 8:2483–2487

    Article  CAS  PubMed  Google Scholar 

  • Wu Y, Sefah K, Liu H et al (2010) DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci USA 107:5–10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu C, Han D, Chen T et al (2013) Building a multifunctional aptamer-based DNA nanoassembly for targeted cancer therapy. J Am Chem Soc 135:18644–18650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wullner U, Neef I, Eller A et al (2008) Cell-specific induction of apoptosis by rationally designed bivalent aptamer-siRNA transcripts silencing eukaryotic elongation factor 2. Curr Cancer Drug Targets 8:554–565

    Article  CAS  PubMed  Google Scholar 

  • Yang M, Peng Z, Ning Y et al (2013) Highly specific and cost-efficient detection of Salmonella Paratyphi A combining aptamers with single-walled carbon nanotubes. Sensors 13:6865–6881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ye X, Jerebtsova M, Ray PE (2000) Liver bypass significantly increases the transduction efficiency of recombinant adenoviral vectors in the lung, intestine, and kidney. Hum Gene Ther 11:621–627

    Article  CAS  PubMed  Google Scholar 

  • Yigit MV, Mazumdar D, Kim HK et al (2007) Smart “turn-on” magnetic resonance contrast agents based on aptamer-functionalized superparamagnetic iron oxide nanoparticles. Chembiochem 8:1675–1678

    Article  CAS  PubMed  Google Scholar 

  • Yigit MV, Mazumdar D, Lu Y (2008) MRI detection of thrombin with aptamer functionalized superparamagnetic iron oxide nanoparticles. Bioconjug Chem 19:412–417

    Article  CAS  PubMed  Google Scholar 

  • You XG, Tu R, Peng ML et al (2014) Molecular magnetic resonance probe targeting VEGF165: preparation and in vitro and in vivo evaluation. Contrast Media Mol Imaging 9:349–354

    Article  CAS  PubMed  Google Scholar 

  • Yu MK, Kim D, Lee IH et al (2011) Image-guided prostate cancer therapy using aptamer-functionalized thermally cross-linked superparamagnetic iron oxide nanoparticles. Small 7:2241–2249

    Article  CAS  PubMed  Google Scholar 

  • Zhang CY, Johnson LW (2009) Single quantum-dot-based aptameric nanosensor for cocaine. Anal Chem 81:3051–3055

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Wang Z, Li XF et al (2006) Ultrasensitive detection of proteins by amplification of affinity aptamers. Angew Chem Int Ed Engl 45:1576–1580

    Article  CAS  PubMed  Google Scholar 

  • Zhao W, Cui CH, Bose S et al (2012) Bioinspired multivalent DNA network for capture and release of cells. Proc Natl Acad Sci USA 109:19626–19631

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Li H, Li S et al (2008) Novel dual inhibitory function aptamer-siRNA delivery system for HIV-1 therapy. Mol Ther 16:1481–1489

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Swiderski P, Li H et al (2009) Selection, characterization and application of new RNA HIV gp 120 aptamers for facile delivery of Dicer substrate siRNAs into HIV infected cells. Nucleic Acids Res 37:3094–3109

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu G, Hu R, Zhao Z et al (2013) Noncanonical self-assembly of multifunctional DNA nanoflowers for biomedical applications. J Am Chem Soc 135:16438–16445

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim V. Berezovski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Muharemagic, D., Berezovski, M.V. (2015). Aptamers in Oncotherapy. In: Erdmann, V., Jurga, S., Barciszewski, J. (eds) RNA and DNA Diagnostics. RNA Technologies. Springer, Cham. https://doi.org/10.1007/978-3-319-17305-4_5

Download citation

Publish with us

Policies and ethics