Skip to main content

Shifted de Bruijn Graphs

  • Conference paper
Coding Theory and Applications

Part of the book series: CIM Series in Mathematical Sciences ((CIMSMS,volume 3))

  • 1144 Accesses

Abstract

We are studying a generalization of the de Bruijn graphs, with applications to storage. We use spectral methods to enumerate the Euler circuits in this graph, which correspond to (very long) strings accessing every string of fixed length exactly once, with the reader reset at regular intervals. We prove that, when the alphabet is of size q, the subwords considered are of length n and a new reader is initiated every k letters, there are exactly \((q^{k})!^{q^{n} }/q^{k+n}\) such exhaustive words. The enumeration generalizes classic results by Tutte, and relates crucially to subtree enumeration in large networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bowe, A., Onodera, T., Sakadane, K., Shibuya, T.: Succinct de Bruijn graphs. In: Algorithms in Bioinformatics. Lecture Notes in Computer Science, pp. 225–235. Springer, Berlin (2012)

    Google Scholar 

  2. Chikhi, R., Rizk, G.: Space-efficient and exact de Bruijn graph representation based on a bloom filter. Algorithms Mol. Biol. 8, 9 (2013)

    Article  Google Scholar 

  3. Compeau, P., Pevzner, P., Tesler, G.: How to apply de Bruijn graphs to genome assembly. Nat. Biotechnol. 29, 987–991 (2011)

    Article  Google Scholar 

  4. Cooper, J., Graham, R.: Generalized de Bruijn cycles (2004). arXiv:0402324

    Google Scholar 

  5. Ehrenborg, R., Kitaev, S., Steingrímsson, E.: Number of cycles in the graph of 312-avoiding permutations (2013). arXiv:1310.1520

    Google Scholar 

  6. Flye Saint-Marie, C.: Solution to question 48. l’Intermédiaire des Math. 1, 107–110 (1894)

    Google Scholar 

  7. Lovász, L.: Random walks on graphs: a survey. In: Combinatorics, Paul Erdös is Eighty, pp. 1–46. János Bolyai Mathematical Society, Budapest (1993)

    Google Scholar 

  8. Picoleau, C.: Complexity of the Hamiltonian cycle in regular graph problem. Theor. Comput. Sci. 131(2), 463–473 (1994)

    Article  Google Scholar 

  9. Rödland, E.: Compact representation of k-mer de Bruijn graphs for genome read assembly. BMC Bioinform. 14, 19 (2013)

    Article  Google Scholar 

  10. Rosenfeld, V.: Some spectral properties of the arc-graph. Commun. Math. Comput. Chem. 43, 41–48 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Rosenfeld, V.: Enumerating de Bruijn sequences. Commun. Math. Comput. Chem. 45, 71–83 (2002)

    MathSciNet  MATH  Google Scholar 

  12. Stanley, R.: Enumerative Combinatorics, Vol. 2. Cambridge Studies in Advanced Mathematics, vol. 62. Cambridge University Press, New York (1999)

    Google Scholar 

  13. Tutte, W.: The dissection of equilateral triangles into equilateral triangles. Proc. Camb. Philos. Soc. 44, 71–83 (1948)

    Article  MathSciNet  Google Scholar 

  14. van Aardenne-Ehrenfest, T., de Bruijn, N.: Circuits and trees in oriented linear graphs. Simon Stevin 28, 143–173 (1951)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ragnar Freij .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Freij, R. (2015). Shifted de Bruijn Graphs. In: Pinto, R., Rocha Malonek, P., Vettori, P. (eds) Coding Theory and Applications. CIM Series in Mathematical Sciences, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-319-17296-5_20

Download citation

Publish with us

Policies and ethics