Skip to main content

Immunohistochemical Approach to the Diagnosis and Prognostic Evaluation of Pancreatic Neuroendocrine Neoplasms

  • Chapter
Book cover Pancreatic Neuroendocrine Neoplasms

Abstract

Pancreatic endocrine tumors include a broad spectrum of neoplasms. Immunohistochemical characterization of the tumors along with clinical evaluation is used to separate tumors into functioning and nonfunctioning neoplasms. Immunohistochemical detection of specific transcription factors can be helpful in the diagnosis and in the differential diagnosis of metastatic pancreatic endocrine tumors. Immunostaining for Ki-67 along with mitotic indices are the commonly used methods for grading pancreatic neuroendocrine tumors. In addition to the hormones normally detected in the pancreatic islets, a small percentage of pancreatic endocrine tumors produce ectopic hormones. Most pancreatic endocrine tumors that produce ectopic hormones are malignant tumors, but the molecular mechanisms of ectopic hormone production are not known. Immunohistochemical methods have become the cornerstone for diagnosis and for prognostic evaluation of pancreatic endocrine tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jürgensen A, Klöppel G (2000) Ontogeny, differentiation and growth of the endocrine pancreas. Virchows Arch 436:527–538

    Article  PubMed  Google Scholar 

  2. LaRosa S, Furlan D, Sessa F, Capella C (2010) The endocrine pancreas. In: Lloyd RV (ed) Endocrine pathology, differential diagnosis and molecular advances. Springer, New York, pp 367–418

    Google Scholar 

  3. Okada N, Takaki R, Kitagawa M (1967) Histological and immunofluorescence studies on the site of origin of glucagon in mammalian pancreas. J Histochem Cytochem 16:405–409

    Article  Google Scholar 

  4. Orci L, Baetens D, Dubois MP et al (1975) Evidence for D-cell of the pancreas secreting somatostatin. Horm Metab Res 7:400–402

    Article  CAS  PubMed  Google Scholar 

  5. Fiocca R, Sessa F, Tenti P et al (1983) Pancreatic polypeptide (PP) cells in the PP-rich lobe of the human pancreas are identified ultrastructurally and immunocytochemically as F cells. Histochemistry 77:511–523

    Article  CAS  PubMed  Google Scholar 

  6. Andralojc KM, Mercalli A, Nowak KW et al (2009) Ghrelin-producing epsilon cells in the developing and adult human pancreas. Diabetologia 52:486–493

    Article  CAS  PubMed  Google Scholar 

  7. Gu G, Dubauskaite J, Melton DA (2002) Direct evidence for the pancreatic lineage: NGN3+ cells are islet progenitors and are distinct from duct progenitors. Development 129:2447–2457

    CAS  PubMed  Google Scholar 

  8. Ashizawa S, Brunicardi FC, Wang XP (2004) PDX-1 and the pancreas. Pancreas 28:109–120

    Article  PubMed  Google Scholar 

  9. Ahlgren U, Pfaff SL, Jessel TM et al (1997) Independent requirement for ISL1 in formation of pancreatic mesenchyme and islet cells. Nature 385:257–260

    Article  CAS  PubMed  Google Scholar 

  10. Gradwohl G, Dierich A, LeMeur M et al (2000) Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc Natl Acad Sci U S A 97:1607–1611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Graham RP, Shrestha B, Caron BL et al (2013) Islet-1 is a sensitive but not entirely specific marker for pancreatic neuroendocrine neoplasms and their metastases. Am J Surg Pathol 37:399–405

    Article  PubMed  Google Scholar 

  12. Hermann G, Konukiewitz B, Schmitt A et al (2011) Hormonally defined pancreatic and duodenal neuroendocrine tumors differ in their transcription factor signatures: expression of ISL1, PDX1, NGN3, and CDX2. Virchows Arch 459:147–154

    Article  CAS  PubMed  Google Scholar 

  13. Erickson LA, Papouchado B, Dimashkieh H et al (2004) Cdx2 as a marker for neuroendocrine tumors of unknown primary sites. Endocr Pathol 15:247–252

    Article  CAS  PubMed  Google Scholar 

  14. Agaimy A, Erlenbach-Wünsch K, Konukiewitz B et al (2013) ISL1 expression is not restricted to pancreatic well-differentiated neuroendocrine neoplasms, but is also commonly found in well and poorly differentiated neuroendocrine neoplasms of extrapancreatic origin. Mod Pathol 26:995–1003

    Article  CAS  PubMed  Google Scholar 

  15. Lan MS, Breslin MB (2009) Structure, expression, and biological function of INSM1 transcription factor in neuroendocrine differentiation. FASEB J 23:2024–2033

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Rosenbaum JN, Guo Z, Baus RM et al (2015) INSMI: a novel immunohistochemical and molecular marker for neuroendocrine and neuroepithelial neoplasms. Am J Clin Pathol (in press)

    Google Scholar 

  17. Tang LH, Gonen M, Hedvat C et al (2012) Objective quantification of the Ki67 proliferative index in neuroendocrine tumors of the gastroenteropancreatic system: a comparison of digital image analysis with manual methods. Am J Surg Pathol 36:1761–1767

    Article  PubMed  Google Scholar 

  18. McCall CM, Shi C, Cornish TC et al (2013) Grading of well-differentiated pancreatic neuroendocrine tumors is improved by the inclusion of both Ki67 proliferative index and mitotic rate. Am J Surg Pathol 37:1671–1677

    Article  PubMed Central  PubMed  Google Scholar 

  19. Klöppel G, Perren A, Heitz PU (2004) The gastroenteropancreatic neuroendocrine cell system and its tumors: the WHO classification. Ann NY Acad Sci 1014:13–27

    Article  PubMed  Google Scholar 

  20. Lloyd RV, Wilson BS (1983) Specific endocrine tissue marker defined by a monoclonal antibody. Science 222:628–630

    Article  CAS  PubMed  Google Scholar 

  21. Lloyd RV, Mervak T, Schmidt K et al (1984) Immunohistochemical detection of chromogranin and neurone specific enolase in pancreatic endocrine neoplasms. Am J Surg Pathol 8:607–614

    Article  CAS  PubMed  Google Scholar 

  22. Portela-Gomes GM, Hacker GW, Weitgasser R (2004) Neuroendocrine cell markers for pancreatic islets and tumors. Appl Immunohistochem Morphol 12:183–192

    Article  CAS  Google Scholar 

  23. Portela-Gomes GM, Stridsberg M (2001) Selective processing of chromogranin A in the different islet cells in human pancreas. J Histochem Cytochem 49:483–490

    Article  CAS  PubMed  Google Scholar 

  24. Wiedenmann B, Franke WW (1985) Identification and localization of synaptophysin, an integral membrane glycoprotein of MW 38,000 characteristic of presynaptic vesicles. Cell 41:1017–1028

    Article  CAS  PubMed  Google Scholar 

  25. Schmechel D, Marango PJ, Brightman M (1978) Neuron specific enolase is a molecular marker for peripheral and central neuroendocrine cells. Nature 276:834–836

    Article  CAS  PubMed  Google Scholar 

  26. Desphande V, Fernandez-del Castillo C, Muzikansky A et al (2004) Cytokeratin 19 is a powerful predictor of survival in pancreatic endocrine tumors. Am J Surg Pathol 28:1145–1153

    Article  Google Scholar 

  27. La Rosa S, Rigoli E, Uccella S et al (2007) Prognostic and biological significance of cytokeratin 19 in pancreatic endocrine tumours. Histopathology 50:597–606

    Article  PubMed  Google Scholar 

  28. Zhang L, Smyrk TC, Oliveira AM et al (2009) KIT is an independent prognostic marker for pancreatic endocrine tumors: a finding derived from analysis of islet cell differentiation markers. Am J Surg Pathol 33:1562–1569

    Article  PubMed  Google Scholar 

  29. Marinoni I, Kurrer AS, Vassella E et al (2014) Loss of DAXX and ATRX are associated with chromosome instability and reduced survival of patients with pancreatic neuroendocrine tumors. Gastroenterology 146:453–460

    Article  CAS  PubMed  Google Scholar 

  30. Reubi JC, Kappeler A, Waser B et al (1998) Immunohistochemical localization of somatostatin receptor sst2A in human tumors. Am J Pathol 153:233–245

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Papotti M, Bongiovanni M, Volante M et al (2002) Expression of somatostatin receptor types 1–5 in 81 cases of gastrointestinal and pancreatic endocrine tumors, A correlative immunohistochemical and reverse-transcriptase polymerase chain reaction analysis. Virchows Arch 440:461–475

    Article  CAS  PubMed  Google Scholar 

  32. Reid MD, Balci S, Saka B et al (2014) Neuroendocrine tumors of the pancreas: current concepts and controversies. Endocr Pathol 25:65–79

    Article  CAS  PubMed  Google Scholar 

  33. Oberg K (2010) Pancreatic endocrine tumors. Semin Oncol 37:594–618

    Article  PubMed  Google Scholar 

  34. La Rosa S, Klersy C, Uccella S et al (2009) Improved histologic and clinicopathologic criteria for prognostic evaluation of pancreatic endocrine tumors. Hum Pathol 40:30–40

    Article  PubMed  Google Scholar 

  35. Soga J, Yakuwa Y (1998) Glucagonoma/diabetico-dermatogenic syndrome (DDS): a statistical evaluation of 407 reported cases. J Hepatobiliary Pancreat Surg 5:312–319

    Article  CAS  PubMed  Google Scholar 

  36. Ruttman E, Klöppel G, Klehn M et al (1980) Pancreatic glucagonoma with and without the syndrome. Immunocytochemical study of 5 tumor cases and review of the literature. Virchows Arch A Pathol Anat Histopathol 388:51–67

    Article  CAS  Google Scholar 

  37. DeLellis RA, Lloyd RV, Heitz PU et al (2004) World Health Organization classification of tumours. Pathology & genetics of tumours of endocrine organs. IARC, Lyon

    Google Scholar 

  38. Thompson GB, van Heerden JA, Grant CS et al (1988) Islet cell carcinomas of the pancreas: a twenty-year experience. Surgery 104:1011–1017

    CAS  PubMed  Google Scholar 

  39. Capella C, Polak JM, Buffa et al (1983) Morphologic patterns and diagnostic criteria of VIP-producing endocrine tumors. A histologic, histochemical, ultrastructural and biochemical study of 32 cases. Cancer 52:1860–1874

    Article  CAS  PubMed  Google Scholar 

  40. McCall CM, Shi C, Klein AP et al (2012) Serotonin expression in pancreatic neuroendocrine tumors correlates with a trabecular histologic pattern and large duct involvement. Hum Pathol 43:1169–1176

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Sanno N, Teramoto A, Osamura RY et al (1997) A growth hormone-releasing hormone-producing pancreatic islet cell tumor metastasized to the pituitary is associated with pituitary somatotroph hyperplasia and acromegaly. J Clin Endocrinol Metab 82:2731–2737

    Article  CAS  PubMed  Google Scholar 

  42. Ezzat S, Ezrin C, Yamashita S et al (1993) Recurrent acromegaly resulting from ectopic growth hormone gene expression by a metastatic pancreatic tumor. Cancer 71:66–70

    Article  CAS  PubMed  Google Scholar 

  43. Dayal Y, Lin HD, Tallberg K et al (1986) Immunocytochemical demonstration of growth hormone – releasing factor in gastrointestinal and pancreatic endocrine tumors. Am J Clin Pathol 85:13–20

    CAS  PubMed  Google Scholar 

  44. Asa SL, Kovacs K, Thoner MD et al (1985) Immunohistological localization of growth-hormone-releasing hormone in human tumors. J Clin Endocrinol Metab 60:423–427

    Article  CAS  PubMed  Google Scholar 

  45. Volante M, Allia E, Gugliotta P (2002) Expression of ghrelin and of the GH secretagogue receptors by pancreatic islet cells and related endocrine tumors. J Clin Endocrinol Metab 87:1300–1308

    Article  CAS  PubMed  Google Scholar 

  46. Clark ES, Carney JA (1984) Pancreatic islet cell tumor associated with Cushing syndrome. Am J Surg Pathol 8:917–924

    Article  CAS  PubMed  Google Scholar 

  47. Corrin B, Gilby ED, Jones NF et al (1973) Oat cell carcinoma of the pancreas with ectopic ACTH secretion. Cancer 31:1523–1527

    Article  CAS  PubMed  Google Scholar 

  48. Arps H, Dietel M, Schulz A et al (1986) Pancreatic endocrine carcinoma with ectopic PTH-production and paraneoplastic hypercalcemia. Virchows Arch A Pathol Anat Histopathol 408:497–503

    Article  CAS  PubMed  Google Scholar 

  49. Ratcliffe WA, Bowden SJ, Dunne FP et al (1994) Expression and processing of parathyroid hormone related protein in a pancreatic endocrine cell tumour associated with hypercalcemia. Clin Endocrinol 40:679–686

    Article  CAS  Google Scholar 

  50. Miraliakbari BA, Asa SL, Boudreau SF (1992) Parathyroid hormone-like peptide in pancreatic endocrine carcinoma and adenocarcinoma associated with hypercalcemia. Hum Pathol 23:884–887

    Article  CAS  PubMed  Google Scholar 

  51. Rizzoli R, Sappino AP, Bonjour JP (1990) Parathyroid hormone-related protein and hypercalcemia in pancreatic neuroendocrine tumors. Int J Cancer 46:394–398

    Article  CAS  PubMed  Google Scholar 

  52. Eckhauser FE, Cheung PS, Vinik AI et al (1986) Nonfunctioning malignant neuroendocrine tumors of the pancreas. Surgery 100:978–988

    CAS  PubMed  Google Scholar 

  53. Evans DB, Skibber JM, Lee JE et al (1993) Nonfunctioning islet cell carcinoma of the pancreas. Surgery 114:1175–1182

    CAS  PubMed  Google Scholar 

  54. La Rosa S, Sessa F, Uccella S et al (1997) Histological and immunohistochemical study of calcitonin-cell tumors of the pancreas. Digestion 58(Suppl 2):19

    Google Scholar 

  55. La Rosa S, Sessa F, Capella C et al (1996) Prognostic criteria in nonfunctioning pancreatic endocrine tumors. Virchows Arch 429:323–333

    Article  PubMed  Google Scholar 

  56. Klöppel G (2000) Mixed exocrine-endocrine tumors of the pancreas. Semin Diagn Pathol 17:104–108

    PubMed  Google Scholar 

  57. Keel SB, Zukerberg L, Graeme-Cook F et al (1996) A pancreatic endocrine tumor arising within a serous cystadenoma of the pancreas. Am J Surg Pathol 20:471–475

    Article  CAS  PubMed  Google Scholar 

  58. Klimstra DS, Rosai J, Heffess CS (1994) Mixed acinar-endocrine carcinomas of the pancreas. Am J Surg Pathol 18:765–778

    Article  CAS  PubMed  Google Scholar 

  59. Klöppel G (2011) Classification and pathology of gastroenteropancreatic neuroendocrine neoplasms. Endocrinol Relat Cancer 18(Suppl 1):S1–S16

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo V. Lloyd MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lloyd, R.V., Rosenbaum, J.N., Erickson, L.A. (2015). Immunohistochemical Approach to the Diagnosis and Prognostic Evaluation of Pancreatic Neuroendocrine Neoplasms. In: La Rosa, S., Sessa, F. (eds) Pancreatic Neuroendocrine Neoplasms. Springer, Cham. https://doi.org/10.1007/978-3-319-17235-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17235-4_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17234-7

  • Online ISBN: 978-3-319-17235-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics