Skip to main content

The Role of Nuclear Medicine in the Diagnosis of Pancreatic Neuroendocrine Neoplasms

  • Chapter
Pancreatic Neuroendocrine Neoplasms

Abstract

Nuclear medicine plays an important role in the diagnostic management of pancreatic neuroendocrine tumors (NETs).

Specific radiopharmaceuticals based on the various biological properties of NETs have been developed, both for conventional scintigraphy and positron emission tomography (PET). In the clinical practice, the choice of the most appropriate radiopharmaceutical depends on several factors, including the biologic characteristics of the tumor (somatostatin receptor status, glucose metabolism, amine metabolism), the clinical information needed (diagnostic or prognostic), and practical issues such as availability and costs. For diagnostic purposes, the choice should be guided by tumor differentiation and grading. In well-differentiated NETs (G1 and low G2), functional imaging with radiolabeled peptides should be performed for lesion identification; in this context, 68Ga-DOTA-peptide PET/CT is considered the nuclear medicine technique of choice. 111In-DTPA-octreotide (OctreoScan®) SPECT/CT should be considered obsolete for diagnostic purposes and maintains a role only for evaluating the receptor status prior to therapy. 18F-FDG is the tracer of choice for imaging poorly differentiated NETs (high G2 and G3), where a loss of NET features is expected, and to obtain prognostic information, since the presence of 18F-FDG-positive lesions correlates with a poor prognosis independently from tumor grading. Other radiopharmaceuticals with a more limited use in pancreatic NETs, i.e., 18F-DOPA and 11C-5-HTP, are also shortly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bodei L, Sundin A, Kidd M et al (2015) The status of neuroendocrine tumor imaging: from darkness to light? Neuroendocrinology 101:1–17

    Google Scholar 

  2. Rufini V, Calcagni ML, Baum RP (2006) Imaging of neuroendocrine tumors. Semin Nucl Med 36:228–247

    Article  PubMed  Google Scholar 

  3. Kwekkeboom DJ, Krenning EP, Scheidhauer K et al (2009) ENETS consensus guidelines for the standards of care in neuroendocrine tumors: somatostatin receptor imaging with (111)In-pentetreotide. Neuroendocrinology 90:184–189

    Article  CAS  PubMed  Google Scholar 

  4. Bombardieri E, Ambrosini V, Aktolun C et al (2010) 111In-pentetreotide scintigraphy: procedure guidelines for tumour imaging. Eur J Nucl Med Mol Imaging 37:1441–1448

    Article  PubMed  Google Scholar 

  5. Balon HR, Brown TL, Goldsmith SJ et al (2011) The SNM practice guideline for somatostatin receptor scintigraphy 2.0. J Nucl Med Technol 39:317–324

    Article  PubMed  Google Scholar 

  6. Decristoforo C, Melendez-Alafort L, Sosabowski JK et al (2000) 99mTc-HYNIC-[Tyr3]-octreotide for imaging somatostatin-receptor-positive tumors: preclinical evaluation and comparison with 111In-octreotide. J Nucl Med 41:1114–1119

    CAS  PubMed  Google Scholar 

  7. Ambrosini V, Fani M, Fanti S et al (2011) Radiopeptide imaging and therapy in Europe. J Nucl Med 52(Suppl 2):42S–55S

    Article  CAS  PubMed  Google Scholar 

  8. Hubalewska-Dydejczyk A, Fross-Baron K, Mikolajczak R et al (2006) 99mTc-EDDA/HYNIC-octreotate scintigraphy, an efficient method for the detection and staging of carcinoid tumours: results of 3 years’ experience. Eur J Nucl Med Mol Imaging 33:1123–1133

    Article  CAS  PubMed  Google Scholar 

  9. Ambrosini V, Campana D, Tomassetti P et al (2012) 68Ga-labelled peptides for diagnosis of gastroenteropancreatic NET. Eur J Nucl Med Mol Imaging 39(Suppl 1):S52–S60

    Article  PubMed  Google Scholar 

  10. Kabasakal L, Demirci E, Ocak M et al (2012) Comparison of 68Ga-DOTATATE and 68Ga-DOTANOC PET/CT imaging in the same patient group with neuroendocrine tumours. Eur J Nucl Med Mol Imaging 39:1271–1277

    Article  PubMed  Google Scholar 

  11. Poeppel TD, Binse I, Petersenn S et al (2013) Differential uptake of (68)Ga-DOTATOC and (68)Ga-DOTATATE in PET/CT of gastroenteropancreatic neuroendocrine tumors. Recent Results Cancer Res 194:353–371

    Article  CAS  PubMed  Google Scholar 

  12. Wild D, Bomanji JB, Benkert P et al (2013) Comparison of 68Ga-DOTANOC and 68Ga-DOTATATE PET/CT within patients with gastroenteropancreatic neuroendocrine tumors. J Nucl Med 54:364–372

    Article  CAS  PubMed  Google Scholar 

  13. Velikyan I, Sundin A, Sörensen J et al (2014) Quantitative and qualitative intrapatient comparison of 68Ga-DOTATOC and 68Ga-DOTATATE: net uptake rate for accurate quantification. J Nucl Med 55:204–210

    Article  CAS  PubMed  Google Scholar 

  14. Virgolini I, Ambrosini V, Bomanji JB et al (2010) Procedure guidelines for PET/CT tumour imaging with 68Ga-DOTA-conjugated peptides: 68Ga-DOTA-TOC, 68Ga-DOTA-NOC, 68Ga-DOTA-TATE. Eur J Nucl Med Mol Imaging 37:2004–2010

    Article  PubMed  Google Scholar 

  15. Castellucci P, Pou Ucha J, Fuccio C et al (2011) Incidence of increased 68Ga-DOTANOC uptake in the pancreatic head in a large series of extrapancreatic NET patients studied with sequential PET/CT. J Nucl Med 52:886–890

    Article  PubMed  Google Scholar 

  16. Al-Ibraheem A, Bundschuh RA, Notni J et al (2011) Focal uptake of 68Ga-DOTATOC in the pancreas: pathological or physiological correlate in patients with neuroendocrine tumours? Eur J Nucl Med Mol Imaging 38:2005–2013

    Article  CAS  PubMed  Google Scholar 

  17. Krausz Y, Rubinstein R, Appelbaum L et al (2012) Ga-68 DOTA-NOC uptake in the pancreas: pathological and physiological patterns. Clin Nucl Med 37:57–62

    Article  PubMed  Google Scholar 

  18. Jacobsson H, Larsson P, Jonsson C et al (2012) Normal uptake of 68Ga-DOTA-TOC by the pancreas uncinate process mimicking malignancy at somatostatin receptor PET. Clin Nucl Med 37:362–365

    Article  PubMed  Google Scholar 

  19. Treglia G, Farchione A, Stefanelli A et al (2013) Masking effect of chronic pancreatitis in the interpretation of somatostatin receptor positron emission tomography in pancreatic neuroendocrine tumors. Pancreas 42:726–728

    Article  PubMed  Google Scholar 

  20. Collarino A, Del Ciello A, Perotti G et al (2015) Intrapancreatic accessory spleen detected by 68Ga-DOTANOC PET/CT and 99mTc-colloid SPECT/CT scintigraphy. Clin Nucl Med 40:415–418

    Google Scholar 

  21. Pettinato C, Sarnelli A, Di Donna M et al (2008) 68Ga-DOTANOC: biodistribution and dosimetry in patients affected by neuroendocrine tumors. Eur J Nucl Med Mol Imaging 35:72–79

    Article  CAS  PubMed  Google Scholar 

  22. Pfeifer A, Knigge U, Mortensen J et al (2012) Clinical PET of neuroendocrine tumors using 64Cu-DOTATATE: first-in-humans study. J Nucl Med 53:1207–1215

    Article  CAS  PubMed  Google Scholar 

  23. Jager PL, Chirakal R, Marriott CJ et al (2008) 6-L-18F-fluorodihydroxyphenilalanine PET in neuroendocrine tumors: basic aspects and emerging clinical applications. J Nucl Med 49:573–586

    Article  CAS  PubMed  Google Scholar 

  24. Dudczak R, Traub-Weidinger T (2010) PET and PET/CT in endocrine tumours. Eur J Radiol 73:481–493

    Article  PubMed  Google Scholar 

  25. Wong KK, Waterfield RT, Marzola MC et al (2012) Contemporary nuclear medicine imaging of neuroendocrine tumours. Clin Radiol 67:1035–1050

    Article  CAS  PubMed  Google Scholar 

  26. Koopmans KP, Neels OC, Kema IP et al (2008) Improved staging of patients with carcinoid and islet cell tumors with 18F-fluorodihydroxyphenilalanine and 11C-5-hydroxytryptophan positron emission tomography. J Clin Oncol 26:1489–1495

    Article  PubMed  Google Scholar 

  27. Orlefors H, Sundin A, Lu L et al (2006) Carbidopa pretreatment improves image interpretation and visualisation of carcinoid tumours with 11C-5-hydroxytryptophan positron emission tomography. Eur J Nucl Med Mol Imaging 33:60–65

    Article  CAS  PubMed  Google Scholar 

  28. de Herder WW (2014) Functional localisation and scintigraphy in neuroendocrine tumours of the gastrointestinal tract and pancreas (GEP-NETs). Eur J Endocrinol 170:173–183

    Article  Google Scholar 

  29. Delbeke D, Coleman RE, Guiberteau MJ et al (2006) Procedure guideline for tumor imaging with 18F-FDG PET/CT 1.0. J Nucl Med 47:885–895, Erratum (2006) in J Nucl Med 47:903

    PubMed  Google Scholar 

  30. Boellaard R, O’Doherty MJ, Weber WA et al (2010) FDG PET and PET/CT: EANM procedure guidelines for tumour PET imaging: version 1.0. Eur J Nucl Med Mol Imaging 37:181–200

    Article  PubMed Central  PubMed  Google Scholar 

  31. Fukukita H, Senda M, Terauchi T et al (2010) Japanese guideline for the oncology FDG-PET/CT data acquisition protocol: synopsis of version 1.0. Ann Nucl Med 24:325–334

    Article  PubMed  Google Scholar 

  32. Ginj M, Zhang H, Waser B et al (2006) Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor targeting of tumors. Proc Natl Acad Sci 103:16436–16441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Wild D, Fani M, Behe M et al (2011) First clinical evidence that imaging with somatostatin receptor antagonists is feasible. J Nucl Med 52:1412–1417

    Article  CAS  PubMed  Google Scholar 

  34. Cescato R, Waser B, Fani M et al (2011) Evaluation of 177Lu‐DOTA‐sst2 antagonist versus 177Lu‐DOTA‐sst2 agonist binding in human cancers in vitro. J Nucl Med 52:1886–1890

    Article  CAS  PubMed  Google Scholar 

  35. Wild D, Macke H, Christ E et al (2008) Glucagon-like peptide-1 receptor scans to localize occult insulinomas. N Engl J Med 359:766–768

    Article  CAS  PubMed  Google Scholar 

  36. Christ E, Wild D, Forrer F et al (2009) Glucagon-like peptide-1 receptor imaging for localization of insulinomas. J Clin Endocrinol Metab 94:4398–4405

    Article  CAS  PubMed  Google Scholar 

  37. Eriksson O, Velikyan I, Selvaraju RK et al (2014) Detection of metastatic insulinoma by positron emission tomography with [68Ga]exendin-4-a case report. J Clin Endocrinol Metab 99:1519–1524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Gabriel M, Decristoforo C, Kendler D et al (2007) 68Ga-DOTATyr3-Octreotide PET in neuroendocrine tumors: comparison with somatostatin receptor scintigraphy and CT. J Nucl Med 48:508–518

    Article  CAS  PubMed  Google Scholar 

  39. Krausz Y, Freedman N, Rubinstein R et al (2011) 68Ga-DOTANOC PET/CT imaging of neuroendocrine tumors: comparison with 111In-DTPA-octreotide (octreoscan). Mol Imaging Biol 13:583–593

    Article  PubMed  Google Scholar 

  40. Schreiter NF, Brenner W, Nogami M et al (2012) Cost comparison of 111In-DTPA-octreotide scintigraphy and 68Ga-DOTATOC PET-CT for staging enteropancreatic neuroendocrine tumours. Eur J Nucl Med 39:72–82

    Article  Google Scholar 

  41. Mansi L, Cuccurullo V (2014) Diagnostic imaging in neuroendocrine tumors. J Nucl Med 55:1576–1577

    Article  PubMed  Google Scholar 

  42. Etchebehere EC, de Oliveira SA, Gumz B et al (2014) 68Ga-DOTATATE PET/CT, 99mTc-HYNIC-octreotide SPECT/CT, and whole-body MR imaging in detection of neuroendocrine tumors: a prospective trial. J Nucl Med 55:1598–1604

    Article  PubMed  Google Scholar 

  43. Prasad V, Ambrosini V, Hommann M et al (2010) Detection of unknown primary neuroendocrine tumours (CUP-NET) using (68)Ga-DOTA-NOC receptor PET/CT. Eur J Nucl Med Mol Imaging 37:67–77

    Article  CAS  PubMed  Google Scholar 

  44. Ambrosini V, Campana D, Bodei L et al (2010) 68Ga-DOTANOC PET/CT clinical impact in patients with neuroendocrine tumors. J Nucl Med 51:669–673

    Article  PubMed  Google Scholar 

  45. Koopmans KP, de Vries EG, Kema IP et al (2006) Staging of carcinoid tumours with 18F-DOPA PET: a prospective, diagnostic accuracy study. Lancet Oncol 7:728–734

    Article  CAS  PubMed  Google Scholar 

  46. Treglia G, Mirk P, Giordano A et al (2012) Diagnostic performance of fluorine-18-dihydroxyphenylalanine positron emission tomography in diagnosing and localizing the focal form of congenital hyperinsulinism: a meta-analysis. Pediatr Radiol 42:1372–1379

    Article  PubMed  Google Scholar 

  47. Yang J, Hao R, Zhu X (2013) Diagnostic role of 18F-dihydroxyphenylalanine positron emission tomography in patients with congenital hyperinsulinism: a meta-analysis. Nucl Med Commun 34:347–353

    Article  CAS  PubMed  Google Scholar 

  48. Rufini V, Baum RP, Castaldi P et al (2012) Role of PET/CT in the functional imaging of endocrine pancreatic tumors. Abdom Imaging 37:1004–1020

    Article  PubMed  Google Scholar 

  49. Treglia G, Inzani F, Campanini N et al (2013) A case of insulinoma detected by (68)Ga-DOTANOC PET/CT and missed by (18)F-dihydroxyphenylalanine PET/CT. Clin Nucl Med 38:e267–e270

    Article  PubMed  Google Scholar 

  50. Santhanam P, Taieb D (2014) Role of 18F-FDOPA PET/CT imaging in endocrinology. Clin Endocrinol 81:789–798

    Google Scholar 

  51. Imperiale A, Sebag F, Vix M et al (2014) 18F-FDOPA PET/CT imaging of insulinoma revisited. Eur J Nucl Med Mol Imaging 42:409–418

    Google Scholar 

  52. Imperiale A, Addeo P, Averous G (2013) Solid pseudopapillary pancreatic tumor mimicking a neuroendocrine neoplasm on 18F-FDOPA PET/CT. J Clin Endocrinol Metab 98:2643–2644

    Article  CAS  PubMed  Google Scholar 

  53. Eriksson B, Orlefors H, Oberg K et al (2005) Developments in PET for the detection of endocrine tumors. Best Pract Res Clin Endocrinol Metab 19:311–324

    Article  CAS  PubMed  Google Scholar 

  54. Garin E, Le Jeune F, Devillers A et al (2009) Predictive value of 18F-FDG PET and somatostatin receptor scintigraphy in patients with metastatic endocrine tumors. J Nucl Med 50:858–864

    Article  CAS  PubMed  Google Scholar 

  55. Binderup T, Knigge U, Loft A et al (2010) 18F‐fluorodeoxyglucose positron emission tomography predicts survival of patients with neuroendocrine tumors. Clin Cancer Res 16:978–985

    Article  CAS  PubMed  Google Scholar 

  56. Severi S, Nanni O, Bodei L et al (2013) Role of 18F-FDG PET/CT in patients treated with 177Lu-DOTATATE for advanced differentiated neuroendocrine tumours. Eur J Nucl Med Mol Imaging 40:881–888

    Article  CAS  PubMed  Google Scholar 

  57. Ezziddin S, Adler L, Sabet A et al (2014) Prognostic stratification of metastatic gastroenteropancreatic neuroendocrine neoplasms by 18F‐FDG PET: feasibility of a metabolic grading system. J Nucl Med 55:1260–1266

    Article  CAS  PubMed  Google Scholar 

  58. Bodei L, Kidd M, Prasad V et al (2014 Jul 22) The future of nuclear medicine imaging of neuroendocrine tumors: on a clear day one might see forever…. Eur J Nucl Med Mol Imaging 41:2189–2193

    Google Scholar 

  59. Toumpanakis C, Kim MK, Rinke A et al (2014) Combination of cross‐sectional and molecular imaging studies in the localization of gastroenteropancreatic neuroendocrine tumors. Neuroendocrinology 99:63–74

    Article  CAS  PubMed  Google Scholar 

  60. Naswa N, Sharma P, Gupta SK et al (2014) Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: competitive or complimentary? Clin Nucl Med 39:27–34

    Article  Google Scholar 

  61. Koopmans KP, Glaudemans AW (2014) Other PET tracers for neuroendocrine tumors. PET Clin 9:57–62

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittoria Rufini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rufini, V., Castaldi, P., Lanni, V. (2015). The Role of Nuclear Medicine in the Diagnosis of Pancreatic Neuroendocrine Neoplasms. In: La Rosa, S., Sessa, F. (eds) Pancreatic Neuroendocrine Neoplasms. Springer, Cham. https://doi.org/10.1007/978-3-319-17235-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17235-4_3

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17234-7

  • Online ISBN: 978-3-319-17235-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics