Skip to main content

Genetics of Frontotemporal Dementia

  • Chapter
  • 1147 Accesses

Abstract

Frontotemporal dementia (FTD) is a progressive brain disease characterized by atrophy of the frontal and anterior temporal lobes. The prevalence has been estimated between 10 and 30 per 100,000, and patients have severe changes in personality and behavior. The disease has a strong genetic component, and in up to 40 % of cases, a positive family history has been observed. To date, seven disease genes have been identified, of which MAPT, GRN, and C9orf72 are most frequently mutated. In contrast to familial FTD, far less is known about sporadic FTD. GWAS reported TMEM106B as an important risk factor for FTD, and recently, new loci have been associated with the disease. In this chapter, we summarize the current insights into the genetics of FTD based on neuropathological and functional data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

aFTLD-U:

Atypical frontotemporal lobar degeneration with ubiquitinated inclusions

AGD:

Argyrophilic grain disease

BIBD:

Basophilic inclusion body disease

C9orf72 :

Chromosome 9 open reading frame 72

CBD:

Corticobasal degeneration

CHMP2B :

Charged multivesicular body protein 2B

FTD-3:

Frontotemporal dementia linked to chromosome 3

FTLD:

Frontotemporal lobar degeneration

FUS :

Fused in sarcoma

GRN :

Granulin

MAPT :

Microtubule-associated protein tau

MSTD:

Multiple system tauopathy with dementia

NFT-dementia:

Neurofibrillary tangle predominant dementia

ni:

No inclusions

NIFID:

Neuronal intermediate filament inclusion disease

PiD:

Pick’s disease

PSP:

Progressive supranuclear palsy

TARDBP :

TAR DNA-binding protein

TDP:

TDP-43

UPS:

Ubiquitin proteasome system

VCP :

Valosin-containing protein

WMT-GGI:

White matter tauopathy with globular glial inclusions

References

  1. Sieben A, Van Langenhove T, Engelborghs S, Martin J-J, Boon P, Cras P, et al. The genetics and neuropathology of frontotemporal lobar degeneration. Acta Neuropathol. 2012;124(3):353–72.

    PubMed Central  CAS  PubMed  Google Scholar 

  2. Bennion Callister J, Pickering-Brown SM. Pathogenesis/genetics of frontotemporal dementia and how it relates to ALS. Exp Neurol. 2014;262:84–90. PubMed PMID: 24915640.

    Google Scholar 

  3. Rascovsky K, Hodges JR, Knopman D, Mendez MF, Kramer JH, Neuhaus J, et al. Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain. 2011;134(Pt 9):2456–77. PubMed PMID: 21810890. PubMed Central PMCID: 3170532.

    PubMed Central  PubMed  Google Scholar 

  4. Gorno-Tempini ML, Hillis AE, Weintraub S, Kertesz A, Mendez M, Cappa SF, et al. Classification of primary progressive aphasia and its variants. Neurology. 2011;76(11):1006–14. PubMed PMID: 21325651. PubMed Central PMCID: 3059138.

    PubMed Central  PubMed  Google Scholar 

  5. Rascovsky K, Grossman M. Clinical diagnostic criteria and classification controversies in frontotemporal lobar degeneration. Int Rev Psychiatry. 2013;25(2):145–58. PubMed PMID: 23611345. PubMed Central PMCID: 3906583.

    PubMed Central  PubMed  Google Scholar 

  6. Johnson JK, Diehl J, Mendez MF, Neuhaus J, Shapira JS, Forman M, et al. Frontotemporal lobar degeneration: demographic characteristics of 353 patients. Arch Neurol. 2005;62(6):925–30. PubMed PMID: 15956163.

    PubMed  Google Scholar 

  7. Josephs KA, Hodges JR, Snowden JS, Mackenzie IR, Neumann M, Mann DM, et al. Neuropathological background of phenotypical variability in frontotemporal dementia. Acta Neuropathol. 2011;122(2):137–53. PubMed PMID: 21614463. PubMed Central PMCID: 3232515.

    PubMed Central  PubMed  Google Scholar 

  8. Riedl L, Mackenzie IR, Forstl H, Kurz A, Diehl-Schmid J. Frontotemporal lobar degeneration: current perspectives. Neuropsychiatr Dis Treat. 2014;10:297–310. PubMed PMID: 24600223. PubMed Central PMCID: 3928059.

    PubMed Central  PubMed  Google Scholar 

  9. Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, et al. Nomenclature for neuropathologic subtypes of frontotemporal lobar degeneration: consensus recommendations. Acta Neuropathol. 2009;117(1):15–8. PubMed PMID: 19015862. Pubmed Central PMCID: 2710877.

    PubMed Central  PubMed  Google Scholar 

  10. Neumann M, Rademakers R, Roeber S, Baker M, Kretzschmar HA, Mackenzie IR. A new subtype of frontotemporal lobar degeneration with FUS pathology. Brain. 2009;132(Pt 11):2922–31. PubMed PMID: 19674978. Pubmed Central PMCID: 2768659.

    PubMed Central  PubMed  Google Scholar 

  11. Roeber S, Mackenzie IR, Kretzschmar HA, Neumann M. TDP-43-negative FTLD-U is a significant new clinico-pathological subtype of FTLD. Acta Neuropathol. 2008;116(2):147–57. PubMed PMID: 18536926.

    CAS  PubMed  Google Scholar 

  12. Mackenzie IR, Neumann M, Bigio EH, Cairns NJ, Alafuzoff I, Kril J, et al. Nomenclature and nosology for neuropathologic subtypes of frontotemporal lobar degeneration: an update. Acta Neuropathol. 2010;119(1):1–4. PubMed PMID: 19924424. Pubmed Central PMCID: 2799633.

    PubMed Central  PubMed  Google Scholar 

  13. Goldman JS, Adamson J, Karydas A, Miller BL, Hutton M. New genes, new dilemmas: FTLD genetics and its implications for families. Am J Alzheimers Dis Other Demen. 2007–2008;22(6):507–15. PubMed PMID: 18166610.

    Google Scholar 

  14. Rohrer JD, Guerreiro R, Vandrovcova J, Uphill J, Reiman D, Beck J, et al. The heritability and genetics of frontotemporal lobar degeneration. Neurology. 2009;73(18):1451–6. PubMed PMID: 19884572. PubMed Central PMCID: 2779007.

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Seelaar H, Kamphorst W, Rosso SM, Azmani A, Masdjedi R, de Koning I, et al. Distinct genetic forms of frontotemporal dementia. Neurology. 2008;71(16):1220–6. PubMed PMID: 18703462.

    CAS  PubMed  Google Scholar 

  16. Hutton M, Lendon CL, Rizzu P, Baker M, Froelich S, Houlden H, et al. Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature. 1998;393(6686):702–5. PubMed PMID: 9641683.

    CAS  PubMed  Google Scholar 

  17. Poorkaj P, Bird TD, Wijsman E, Nemens E, Garruto RM, Anderson L, et al. Tau is a candidate gene for chromosome 17 frontotemporal dementia. Ann Neurol. 1998;43(6):815–25. PubMed PMID: 9629852.

    CAS  PubMed  Google Scholar 

  18. Spillantini MG, Murrell JR, Goedert M, Farlow MR, Klug A, Ghetti B. Mutation in the tau gene in familial multiple system tauopathy with presenile dementia. Proc Natl Acad Sci U S A. 1998;95(13):7737–41. PubMed PMID: 9636220. PubMed Central PMCID: 22742.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Baker M, Mackenzie IR, Pickering-Brown SM, Gass J, Rademakers R, Lindholm C, et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442(7105):916–9. PubMed PMID: 16862116.

    CAS  PubMed  Google Scholar 

  20. Cruts M, Gijselinck I, van der Zee J, Engelborghs S, Wils H, Pirici D, et al. Null mutations in progranulin cause ubiquitin-positive frontotemporal dementia linked to chromosome 17q21. Nature. 2006;442(7105):920–4. PubMed PMID: 16862115.

    CAS  PubMed  Google Scholar 

  21. DeJesus-Hernandez M, Mackenzie IR, Boeve BF, Boxer AL, Baker M, Rutherford NJ, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron. 2011;72(2):245–56. PubMed PMID: 21944778. Pubmed Central PMCID: 3202986.

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Renton AE, Majounie E, Waite A, Simon-Sanchez J, Rollinson S, Gibbs JR, et al. A hexanucleotide repeat expansion in C9ORF72 is the cause of chromosome 9p21-linked ALS-FTD. Neuron. 2011;72(2):257–68. PubMed PMID: 21944779. Pubmed Central PMCID: 3200438.

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Cohn-Hokke PE, Elting MW, Pijnenburg YA, van Swieten JC. Genetics of dementia: update and guidelines for the clinician. Am J Med Genet B Neuropsychiatr Genet. 2012;159B(6):628–43. PubMed PMID: 22815225.

    PubMed  Google Scholar 

  24. Benajiba L, Le Ber I, Camuzat A, Lacoste M, Thomas-Anterion C, Couratier P, et al. TARDBP mutations in motoneuron disease with frontotemporal lobar degeneration. Ann Neurol. 2009;65(4):470–3. PubMed PMID: 19350673.

    CAS  PubMed  Google Scholar 

  25. Borroni B, Archetti S, Del Bo R, Papetti A, Buratti E, Bonvicini C, et al. TARDBP mutations in frontotemporal lobar degeneration: frequency, clinical features, and disease course. Rejuvenation Res. 2010;13(5):509–17. PubMed PMID: 20645878.

    CAS  PubMed  Google Scholar 

  26. Huey ED, Ferrari R, Moreno JH, Jensen C, Morris CM, Potocnik F, et al. FUS and TDP43 genetic variability in FTD and CBS. Neurobiol Aging. 2012;33(5):1016 e9–17. PubMed PMID: 21943958.

    Google Scholar 

  27. Van Langenhove T, van der Zee J, Sleegers K, Engelborghs S, Vandenberghe R, Gijselinck I, et al. Genetic contribution of FUS to frontotemporal lobar degeneration. Neurology. 2010;74(5):366–71. PubMed PMID: 20124201.

    PubMed  Google Scholar 

  28. Van Deerlin VM, Sleiman PM, Martinez-Lage M, Chen-Plotkin A, Wang LS, Graff-Radford NR, et al. Common variants at 7p21 are associated with frontotemporal lobar degeneration with TDP-43 inclusions. Nat Genet. 2010;42(3):234–9. PubMed PMID: 20154673. Pubmed Central PMCID: 2828525.

    PubMed Central  PubMed  Google Scholar 

  29. Ferrari R, Hernandez DG, Nalls MA, Rohrer JD, Ramasamy A, Kwok JB, et al. Frontotemporal dementia and its subtypes: a genome-wide association study. Lancet Neurol. 2014;13(7):686–99. PubMed PMID: 24943344.

    PubMed  Google Scholar 

  30. Spillantini MG, Goedert M. Tau pathology and neurodegeneration. Lancet Neurol. 2013;12(6):609–22. PubMed PMID: 23684085.

    CAS  PubMed  Google Scholar 

  31. Goedert M, Spillantini MG, Cairns NJ, Crowther RA. Tau proteins of Alzheimer paired helical filaments: abnormal phosphorylation of all six brain isoforms. Neuron. 1992;8(1):159–68. PubMed PMID: 1530909.

    CAS  PubMed  Google Scholar 

  32. Flament S, Delacourte A, Verny M, Hauw JJ, Javoy-Agid F. Abnormal Tau proteins in progressive supranuclear palsy. Similarities and differences with the neurofibrillary degeneration of the Alzheimer type. Acta Neuropathol. 1991;81(6):591–6. PubMed PMID: 1831952.

    CAS  PubMed  Google Scholar 

  33. Ksiezak-Reding H, Morgan K, Mattiace LA, Davies P, Liu WK, Yen SH, et al. Ultrastructure and biochemical composition of paired helical filaments in corticobasal degeneration. Am J Pathol. 1994;145(6):1496–508. PubMed PMID: 7992852. Pubmed Central PMCID: 1887493.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Togo T, Sahara N, Yen SH, Cookson N, Ishizawa T, Hutton M, et al. Argyrophilic grain disease is a sporadic 4-repeat tauopathy. J Neuropathol Exp Neurol. 2002;61(6):547–56. PubMed PMID: 12071638.

    CAS  PubMed  Google Scholar 

  35. Delacourte A, Robitaille Y, Sergeant N, Buee L, Hof PR, Wattez A, et al. Specific pathological Tau protein variants characterize Pick’s disease. J Neuropathol Exp Neurol. 1996;55(2):159–68. PubMed PMID: 8786374.

    CAS  PubMed  Google Scholar 

  36. Baker M, Litvan I, Houlden H, Adamson J, Dickson D, Perez-Tur J, et al. Association of an extended haplotype in the tau gene with progressive supranuclear palsy. Hum Mol Genet. 1999;8(4):711–5. PubMed PMID: 10072441.

    CAS  PubMed  Google Scholar 

  37. Houlden H, Baker M, Morris HR, MacDonald N, Pickering-Brown S, Adamson J, et al. Corticobasal degeneration and progressive supranuclear palsy share a common tau haplotype. Neurology. 2001;56(12):1702–6. PubMed PMID: 11425937.

    CAS  PubMed  Google Scholar 

  38. Pastor P, Ezquerra M, Munoz E, Marti MJ, Blesa R, Tolosa E, et al. Significant association between the tau gene A0/A0 genotype and Parkinson’s disease. Ann Neurol. 2000;47(2):242–5. PubMed PMID: 10665497.

    CAS  PubMed  Google Scholar 

  39. Stefansson H, Helgason A, Thorleifsson G, Steinthorsdottir V, Masson G, Barnard J, et al. A common inversion under selection in Europeans. Nat Genet. 2005;37(2):129–37. PubMed PMID: 15654335.

    CAS  PubMed  Google Scholar 

  40. Binder LI, Frankfurter A, Rebhun LI. The distribution of tau in the mammalian central nervous system. J Cell Biol. 1985;101(4):1371–8. PubMed PMID: 3930508. Pubmed Central PMCID: 2113928.

    CAS  PubMed  Google Scholar 

  41. Andreadis A, Brown WM, Kosik KS. Structure and novel exons of the human tau gene. Biochemistry. 1992;31(43):10626–33. PubMed PMID: 1420178.

    CAS  PubMed  Google Scholar 

  42. Cleveland DW, Hwo SY, Kirschner MW. Purification of tau, a microtubule-associated protein that induces assembly of microtubules from purified tubulin. J Mol Biol. 1977;116(2):207–25. PubMed PMID: 599557.

    CAS  PubMed  Google Scholar 

  43. Hirokawa N. Microtubule organization and dynamics dependent on microtubule-associated proteins. Curr Opin Cell Biol. 1994;6(1):74–81. PubMed PMID: 8167029.

    CAS  PubMed  Google Scholar 

  44. Drechsel DN, Hyman AA, Cobb MH, Kirschner MW. Modulation of the dynamic instability of tubulin assembly by the microtubule-associated protein tau. Mol Biol Cell. 1992;3(10):1141–54. PubMed PMID: 1421571. Pubmed Central PMCID: 275678.

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Goode BL, Chau M, Denis PE, Feinstein SC. Structural and functional differences between 3-repeat and 4-repeat tau isoforms. Implications for normal tau function and the onset of neurodegenerative disease. J Biol Chem. 2000;275(49):38182–9. PubMed PMID: 10984497.

    CAS  PubMed  Google Scholar 

  46. Gustke N, Trinczek B, Biernat J, Mandelkow EM, Mandelkow E. Domains of tau protein and interactions with microtubules. Biochemistry. 1994;33(32):9511–22. PubMed PMID: 8068626.

    CAS  PubMed  Google Scholar 

  47. Brandt R, Leger J, Lee G. Interaction of tau with the neural plasma membrane mediated by tau’s amino-terminal projection domain. J Cell Biol. 1995;131(5):1327–40. PubMed PMID: 8522593. Pubmed Central PMCID: 2120645.

    CAS  PubMed  Google Scholar 

  48. Pooler AM, Hanger DP. Functional implications of the association of tau with the plasma membrane. Biochem Soc Trans. 2010;38(4):1012–5. PubMed PMID: 20658995.

    CAS  PubMed  Google Scholar 

  49. Ebneth A, Godemann R, Stamer K, Illenberger S, Trinczek B, Mandelkow E. Overexpression of tau protein inhibits kinesin-dependent trafficking of vesicles, mitochondria, and endoplasmic reticulum: implications for Alzheimer’s disease. J Cell Biol. 1998;143(3):777–94. PubMed PMID: 9813097. Pubmed Central PMCID: 2148132.

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Trinczek B, Ebneth A, Mandelkow EM, Mandelkow E. Tau regulates the attachment/detachment but not the speed of motors in microtubule-dependent transport of single vesicles and organelles. J Cell Sci. 1999;112(Pt 14):2355–67. PubMed PMID: 10381391.

    CAS  PubMed  Google Scholar 

  51. Dixit R, Ross JL, Goldman YE, Holzbaur EL. Differential regulation of dynein and kinesin motor proteins by tau. Science. 2008;319(5866):1086–9. PubMed PMID: 18202255. Pubmed Central PMCID: 2866193.

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Ittner LM, Ke YD, Delerue F, Bi M, Gladbach A, van Eersel J, et al. Dendritic function of tau mediates amyloid-beta toxicity in Alzheimer’s disease mouse models6. Cell. 2010;142(3):387–97. PubMed PMID: 20655099.

    CAS  PubMed  Google Scholar 

  53. Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68(6):1067–81. PubMed PMID: 21172610. PubMed Central PMCID: 3026458.

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Grundke-Iqbal I, Iqbal K, Quinlan M, Tung YC, Zaidi MS, Wisniewski HM. Microtubule-associated protein tau. A component of Alzheimer paired helical filaments. J Biol Chem. 1986;261(13):6084–9. PubMed PMID: 3084478.

    CAS  PubMed  Google Scholar 

  55. Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci U S A. 1986;83(13):4913–7. PubMed PMID: 3088567. Pubmed Central PMCID: 323854.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Kidd M. Paired helical filaments in electron microscopy of Alzheimer’s disease. Nature. 1963;197:192–3. PubMed PMID: 14032480.

    CAS  PubMed  Google Scholar 

  57. Alonso AC, Grundke-Iqbal I, Iqbal K. Alzheimer’s disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med. 1996;2(7):783–7. PubMed PMID: 8673924.

    CAS  PubMed  Google Scholar 

  58. Bramblett GT, Goedert M, Jakes R, Merrick SE, Trojanowski JQ, Lee VM. Abnormal tau phosphorylation at Ser396 in Alzheimer’s disease recapitulates development and contributes to reduced microtubule binding. Neuron. 1993;10(6):1089–99. PubMed PMID: 8318230.

    CAS  PubMed  Google Scholar 

  59. Iqbal K, Grundke-Iqbal I, Zaidi T, Merz PA, Wen GY, Shaikh SS, et al. Defective brain microtubule assembly in Alzheimer’s disease. Lancet. 1986;2(8504):412–6. PubMed PMID: 2874414.

    Google Scholar 

  60. Alonso AC, Zaidi T, Grundke-Iqbal I, Iqbal K. Role of abnormally phosphorylated tau in the breakdown of microtubules in Alzheimer disease. Proc Natl Acad Sci U S A. 1994;91(12):5562–6. PubMed PMID: 8202528. PubMed Central PMCID: 44036.

    PubMed Central  CAS  PubMed  Google Scholar 

  61. Alonso AD, Grundke-Iqbal I, Barra HS, Iqbal K. Abnormal phosphorylation of tau and the mechanism of Alzheimer neurofibrillary degeneration: sequestration of microtubule-associated proteins 1 and 2 and the disassembly of microtubules by the abnormal tau. Proc Natl Acad Sci U S A. 1997;94(1):298–303. PubMed PMID: 8990203. PubMed Central PMCID: 19321.

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K. Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis. 2013;33 Suppl 1:S123–39. PubMed PMID: 22710920.

    PubMed  Google Scholar 

  63. Mercken M, Vandermeeren M, Lubke U, Six J, Boons J, Van de Voorde A, et al. Monoclonal antibodies with selective specificity for Alzheimer Tau are directed against phosphatase-sensitive epitopes. Acta Neuropathol. 1992;84(3):265–72. PubMed PMID: 1384266.

    CAS  PubMed  Google Scholar 

  64. Kanemaru K, Takio K, Miura R, Titani K, Ihara Y. Fetal-type phosphorylation of the tau in paired helical filaments. J Neurochem. 1992;58(5):1667–75. PubMed PMID: 1560225.

    CAS  PubMed  Google Scholar 

  65. Dolan PJ, Johnson GV. The role of tau kinases in Alzheimer’s disease. Curr Opin Drug Discovery Dev. 2010;13(5):595–603. PubMed PMID: 20812151. PubMed Central PMCID: 2941661.

    CAS  Google Scholar 

  66. Hanger DP, Anderton BH, Noble W. Tau phosphorylation: the therapeutic challenge for neurodegenerative disease. Trends Mol Med. 2009;15(3):112–9. PubMed PMID: 19246243.

    CAS  PubMed  Google Scholar 

  67. Cruts M, Theuns J, Van Broeckhoven C. Locus-specific mutation databases for neurodegenerative brain diseases. Hum Mutat. 2012;33(9):1340–4. PubMed PMID: 22581678. PubMed Central PMCID: 3465795.

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Rademakers R, Cruts M, van Broeckhoven C. The role of tau (MAPT) in frontotemporal dementia and related tauopathies. Hum Mutat. 2004;24(4):277–95. PubMed PMID: 15365985.

    CAS  PubMed  Google Scholar 

  69. Hong M, Zhukareva V, Vogelsberg-Ragaglia V, Wszolek Z, Reed L, Miller BI, et al. Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science. 1998;282(5395):1914–7. PubMed PMID: 9836646.

    CAS  PubMed  Google Scholar 

  70. D’Souza I, Schellenberg GD. Determinants of 4-repeat tau expression. Coordination between enhancing and inhibitory splicing sequences for exon 10 inclusion. J Biol Chem. 2000;275(23):17700–9. PubMed PMID: 10748133.

    PubMed  Google Scholar 

  71. D’Souza I, Schellenberg GD. tau Exon 10 expression involves a bipartite intron 10 regulatory sequence and weak 5′ and 3′ splice sites. J Biol Chem. 2002;277(29):26587–99. PubMed PMID: 12000767.

    PubMed  Google Scholar 

  72. Rizzu P, Van Swieten JC, Joosse M, Hasegawa M, Stevens M, Tibben A, et al. High prevalence of mutations in the microtubule-associated protein tau in a population study of frontotemporal dementia in the Netherlands. Am J Hum Genet. 1999;64(2):414–21. PubMed PMID: 9973279. PubMed Central PMCID: 1377751.

    PubMed Central  CAS  PubMed  Google Scholar 

  73. D’Souza I, Schellenberg GD. Regulation of tau isoform expression and dementia. Biochim Biophys Acta. 2005;1739(2–3):104–15. PubMed PMID: 15615630.

    PubMed  Google Scholar 

  74. Gotz J, Deters N, Doldissen A, Bokhari L, Ke Y, Wiesner A, et al. A decade of tau transgenic animal models and beyond. Brain Pathol. 2007;17(1):91–103. PubMed PMID: 17493043.

    CAS  PubMed  Google Scholar 

  75. Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005;309(5733):476–81. PubMed PMID: 16020737. PubMed Central PMCID: 1574647.

    PubMed Central  CAS  PubMed  Google Scholar 

  76. Roberson ED. Mouse models of frontotemporal dementia. Ann Neurol. 2012;72(6):837–49. PubMed PMID: 23280835. PubMed Central PMCID: 3539234.

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Spires TL, Orne JD, SantaCruz K, Pitstick R, Carlson GA, Ashe KH, et al. Region-specific dissociation of neuronal loss and neurofibrillary pathology in a mouse model of tauopathy. Am J Pathol. 2006;168(5):1598–607. PubMed PMID: 16651626. PubMed Central PMCID: 1606598.

    PubMed Central  CAS  PubMed  Google Scholar 

  78. de Calignon A, Fox LM, Pitstick R, Carlson GA, Bacskai BJ, Spires-Jones TL, et al. Caspase activation precedes and leads to tangles. Nature. 2010;464(7292):1201–4. PubMed PMID: 20357768. PubMed Central PMCID: 3091360.

    PubMed Central  PubMed  Google Scholar 

  79. Sydow A, Van der Jeugd A, Zheng F, Ahmed T, Balschun D, Petrova O, et al. Tau-induced defects in synaptic plasticity, learning, and memory are reversible in transgenic mice after switching off the toxic Tau mutant. J Neurosci. 2011;31(7):2511–25. PubMed PMID: 21325519.

    CAS  PubMed  Google Scholar 

  80. Mocanu MM, Nissen A, Eckermann K, Khlistunova I, Biernat J, Drexler D, et al. The potential for beta-structure in the repeat domain of tau protein determines aggregation, synaptic decay, neuronal loss, and coassembly with endogenous Tau in inducible mouse models of tauopathy. J Neurosci. 2008;28(3):737–48. PubMed PMID: 18199773.

    CAS  PubMed  Google Scholar 

  81. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, et al. Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol. 2009;11(7):909–13. PubMed PMID: 19503072. PubMed Central PMCID: 2726961.

    PubMed Central  CAS  PubMed  Google Scholar 

  82. Clavaguera F, Hench J, Lavenir I, Schweighauser G, Frank S, Goedert M, et al. Peripheral administration of tau aggregates triggers intracerebral tauopathy in transgenic mice. Acta Neuropathol. 2014;127(2):299–301. PubMed PMID: 24362441.

    PubMed Central  PubMed  Google Scholar 

  83. Frost B, Jacks RL, Diamond MI. Propagation of tau misfolding from the outside to the inside of a cell. J Biol Chem. 2009;284(19):12845–52. PubMed PMID: 19282288. PubMed Central PMCID: 2676015.

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Iba M, Guo JL, McBride JD, Zhang B, Trojanowski JQ, Lee VM. Synthetic tau fibrils mediate transmission of neurofibrillary tangles in a transgenic mouse model of Alzheimer’s-like tauopathy. J Neurosci. 2013;33(3):1024–37. PubMed PMID: 23325240. PubMed Central PMCID: 3575082.

    PubMed Central  CAS  PubMed  Google Scholar 

  85. de Calignon A, Polydoro M, Suarez-Calvet M, William C, Adamowicz DH, Kopeikina KJ, et al. Propagation of tau pathology in a model of early Alzheimer’s disease. Neuron. 2012;73(4):685–97. PubMed PMID: 22365544. PubMed Central PMCID: 3292759.

    PubMed Central  PubMed  Google Scholar 

  86. Clavaguera F, Akatsu H, Fraser G, Crowther RA, Frank S, Hench J, et al. Brain homogenates from human tauopathies induce tau inclusions in mouse brain. Proc Natl Acad Sci U S A. 2013;110(23):9535–40. PubMed PMID: 23690619. PubMed Central PMCID: 3677441.

    PubMed Central  CAS  PubMed  Google Scholar 

  87. Lasagna-Reeves CA, Castillo-Carranza DL, Sengupta U, Guerrero-Munoz MJ, Kiritoshi T, Neugebauer V, et al. Alzheimer brain-derived tau oligomers propagate pathology from endogenous tau. Sci Rep. 2012;2:700. PubMed PMID: 23050084. PubMed Central PMCID: 3463004.

    PubMed Central  PubMed  Google Scholar 

  88. Wu JW, Herman M, Liu L, Simoes S, Acker CM, Figueroa H, et al. Small misfolded Tau species are internalized via bulk endocytosis and anterogradely and retrogradely transported in neurons. J Biol Chem. 2013;288(3):1856–70. PubMed PMID: 23188818. PubMed Central PMCID: 3548495.

    PubMed Central  CAS  PubMed  Google Scholar 

  89. Guo JL, Lee VM. Seeding of normal Tau by pathological Tau conformers drives pathogenesis of Alzheimer-like tangles. J Biol Chem. 2011;286(17):15317–31. PubMed PMID: 21372138. PubMed Central PMCID: 3083182.

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Kfoury N, Holmes BB, Jiang H, Holtzman DM, Diamond MI. Trans-cellular propagation of Tau aggregation by fibrillar species. J Biol Chem. 2012;287(23):19440–51. PubMed PMID: 22461630. PubMed Central PMCID: 3365982.

    PubMed Central  CAS  PubMed  Google Scholar 

  91. Santa-Maria I, Varghese M, Ksiezak-Reding H, Dzhun A, Wang J, Pasinetti GM. Paired helical filaments from Alzheimer disease brain induce intracellular accumulation of Tau protein in aggresomes. J Biol Chem. 2012;287(24):20522–33. PubMed PMID: 22496370. PubMed Central PMCID: 3370237.

    PubMed Central  CAS  PubMed  Google Scholar 

  92. Wittmann CW, Wszolek MF, Shulman JM, Salvaterra PM, Lewis J, Hutton M, et al. Tauopathy in Drosophila: neurodegeneration without neurofibrillary tangles. Science. 2001;293(5530):711–4. PubMed PMID: 11408621.

    CAS  PubMed  Google Scholar 

  93. Kraemer BC, Zhang B, Leverenz JB, Thomas JH, Trojanowski JQ, Schellenberg GD. Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc Natl Acad Sci U S A. 2003;100(17):9980–5. PubMed PMID: 12872001. PubMed Central PMCID: 187908.

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Paquet D, Bhat R, Sydow A, Mandelkow EM, Berg S, Hellberg S, et al. A zebrafish model of tauopathy allows in vivo imaging of neuronal cell death and drug evaluation. J Clin Invest. 2009;119(5):1382–95. PubMed PMID: 19363289. PubMed Central PMCID: 2673864.

    PubMed Central  CAS  PubMed  Google Scholar 

  95. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, et al. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science. 2006;314(5796):130–3. PubMed PMID: 17023659.

    CAS  PubMed  Google Scholar 

  96. Mackenzie IR. The neuropathology and clinical phenotype of FTD with progranulin mutations. Acta Neuropathol. 2007;114(1):49–54. PubMed PMID: 17458552.

    PubMed  Google Scholar 

  97. Behrens MI, Mukherjee O, Tu PH, Liscic RM, Grinberg LT, Carter D, et al. Neuropathologic heterogeneity in HDDD1: a familial frontotemporal lobar degeneration with ubiquitin-positive inclusions and progranulin mutation. Alzheimer Dis Assoc Disord. 2007;21(1):1–7. PubMed PMID: 17334266.

    PubMed  Google Scholar 

  98. Leverenz JB, Yu CE, Montine TJ, Steinbart E, Bekris LM, Zabetian C, et al. A novel progranulin mutation associated with variable clinical presentation and tau, TDP43 and alpha-synuclein pathology. Brain. 2007;130(Pt 5):1360–74. PubMed PMID: 17439980.

    CAS  PubMed  Google Scholar 

  99. Mackenzie IR, Baker M, Pickering-Brown S, Hsiung GY, Lindholm C, Dwosh E, et al. The neuropathology of frontotemporal lobar degeneration caused by mutations in the progranulin gene. Brain. 2006;129(Pt 11):3081–90. PubMed PMID: 17071926.

    PubMed  Google Scholar 

  100. Spina S, Murrell JR, Huey ED, Wassermann EM, Pietrini P, Baraibar MA, et al. Clinicopathologic features of frontotemporal dementia with progranulin sequence variation. Neurology. 2007;68(11):820–7. PubMed PMID: 17202431.

    CAS  PubMed  Google Scholar 

  101. Bhandari V, Bateman A. Structure and chromosomal location of the human granulin gene. Biochem Biophys Res Commun. 1992;188(1):57–63. PubMed PMID: 1417868.

    CAS  PubMed  Google Scholar 

  102. Bateman A, Bennett HP. Granulins: the structure and function of an emerging family of growth factors. J Endocrinol. 1998;158(2):145–51. PubMed PMID: 9771457.

    CAS  PubMed  Google Scholar 

  103. Cadieux B, Chitramuthu BP, Baranowski D, Bennett HP. The zebrafish progranulin gene family and antisense transcripts. BMC Genomics. 2005;6:156. PubMed PMID: 16277664. PubMed Central PMCID: 1310530.

    PubMed Central  PubMed  Google Scholar 

  104. Kao AW, Eisenhut RJ, Martens LH, Nakamura A, Huang A, Bagley JA, et al. A neurodegenerative disease mutation that accelerates the clearance of apoptotic cells. Proc Natl Acad Sci U S A. 2011;108(11):4441–6. PubMed PMID: 21368173. PubMed Central PMCID: 3060230.

    PubMed Central  CAS  PubMed  Google Scholar 

  105. Pera EM, Hou S, Strate I, Wessely O, De Robertis EM. Exploration of the extracellular space by a large-scale secretion screen in the early Xenopus embryo. Int J Dev Biol. 2005;49(7):781–96. PubMed PMID: 16172975.

    CAS  PubMed  Google Scholar 

  106. Bhandari V, Giaid A, Bateman A. The complementary deoxyribonucleic acid sequence, tissue distribution, and cellular localization of the rat granulin precursor. Endocrinology. 1993;133(6):2682–9. PubMed PMID: 8243292.

    CAS  PubMed  Google Scholar 

  107. Daniel R, He Z, Carmichael KP, Halper J, Bateman A. Cellular localization of gene expression for progranulin. J Histochem Cytochem. 2000;48(7):999–1009. PubMed PMID: 10858277.

    CAS  PubMed  Google Scholar 

  108. Petkau TL, Neal SJ, Orban PC, MacDonald JL, Hill AM, Lu G, et al. Progranulin expression in the developing and adult murine brain. J Comp Neurol. 2010;518(19):3931–47. PubMed PMID: 20737593.

    PubMed  Google Scholar 

  109. Carrasquillo MM, Nicholson AM, Finch N, Gibbs JR, Baker M, Rutherford NJ, et al. Genome-wide screen identifies rs646776 near sortilin as a regulator of progranulin levels in human plasma. Am J Hum Genet. 2010;87(6):890–7. PubMed PMID: 21087763. PubMed Central PMCID: 2997361.

    PubMed Central  CAS  PubMed  Google Scholar 

  110. Hu F, Padukkavidana T, Vaegter CB, Brady OA, Zheng Y, Mackenzie IR, et al. Sortilin-mediated endocytosis determines levels of the frontotemporal dementia protein, progranulin. Neuron. 2010;68(4):654–67. PubMed PMID: 21092856. PubMed Central PMCID: 2990962.

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Lee WC, Almeida S, Prudencio M, Caulfield TR, Zhang YJ, Tay WM, et al. Targeted manipulation of the sortilin-progranulin axis rescues progranulin haploinsufficiency. Hum Mol Genet. 2014;23(6):1467–78. PubMed PMID: 24163244. PubMed Central PMCID: 3929086.

    PubMed Central  CAS  PubMed  Google Scholar 

  112. Kleinberger G, Capell A, Haass C, Van Broeckhoven C. Mechanisms of granulin deficiency: lessons from cellular and animal models. Mol Neurobiol. 2013;47(1):337–60. PubMed PMID: 23239020. PubMed Central PMCID: 3538123.

    PubMed Central  CAS  PubMed  Google Scholar 

  113. Chitramuthu BP, Baranowski DC, Kay DG, Bateman A, Bennett HP. Progranulin modulates zebrafish motoneuron development in vivo and rescues truncation defects associated with knockdown of Survival motor neuron 1. Mol Neurodegener. 2010;5:41. PubMed PMID: 20946666. PubMed Central PMCID: 2974670.

    PubMed Central  PubMed  Google Scholar 

  114. Gass J, Lee WC, Cook C, Finch N, Stetler C, Jansen-West K, et al. Progranulin regulates neuronal outgrowth independent of sortilin. Mol Neurodegener. 2012;7:33. PubMed PMID: 22781549. PubMed Central PMCID: 3508877.

    PubMed Central  CAS  PubMed  Google Scholar 

  115. Laird AS, Van Hoecke A, De Muynck L, Timmers M, Van den Bosch L, Van Damme P, et al. Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy. PLoS One. 2010;5(10):e13368. PubMed PMID: 20967127. PubMed Central PMCID: 2954192.

    PubMed Central  PubMed  Google Scholar 

  116. Ryan CL, Baranowski DC, Chitramuthu BP, Malik S, Li Z, Cao M, et al. Progranulin is expressed within motor neurons and promotes neuronal cell survival. BMC Neurosci. 2009;10:130. PubMed PMID: 19860916. PubMed Central PMCID: 2779192.

    PubMed Central  PubMed  Google Scholar 

  117. Van Damme P, Van Hoecke A, Lambrechts D, Vanacker P, Bogaert E, van Swieten J, et al. Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival. J Cell Biol. 2008;181(1):37–41. PubMed PMID: 18378771. PubMed Central PMCID: 2287280.

    PubMed Central  PubMed  Google Scholar 

  118. Almeida S, Zhang Z, Coppola G, Mao W, Futai K, Karydas A, et al. Induced pluripotent stem cell models of progranulin-deficient frontotemporal dementia uncover specific reversible neuronal defects. Cell Rep. 2012;2(4):789–98. PubMed PMID: 23063362. PubMed Central PMCID: 3532907.

    PubMed Central  CAS  PubMed  Google Scholar 

  119. Gao X, Joselin AP, Wang L, Kar A, Ray P, Bateman A, et al. Progranulin promotes neurite outgrowth and neuronal differentiation by regulating GSK-3beta. Protein Cell. 2010;1(6):552–62. PubMed PMID: 21204008.

    CAS  PubMed  Google Scholar 

  120. Nedachi T, Kawai T, Matsuwaki T, Yamanouchi K, Nishihara M. Progranulin enhances neural progenitor cell proliferation through glycogen synthase kinase 3beta phosphorylation. Neuroscience. 2011;185:106–15. PubMed PMID: 21540081.

    CAS  PubMed  Google Scholar 

  121. Guo A, Tapia L, Bamji SX, Cynader MS, Jia W. Progranulin deficiency leads to enhanced cell vulnerability and TDP-43 translocation in primary neuronal cultures. Brain Res. 2010;1366:1–8. PubMed PMID: 20888804.

    CAS  PubMed  Google Scholar 

  122. Kleinberger G, Wils H, Ponsaerts P, Joris G, Timmermans J-P, Van Broeckhoven C, et al. Increased caspase activation and decreased TDP-43 solubility in progranulin knockout cortical cultures. J Neurochem. 2010;115(3):735–47.

    CAS  PubMed  Google Scholar 

  123. Yin F, Banerjee R, Thomas B, Zhou P, Qian L, Jia T, et al. Exaggerated inflammation, impaired host defense, and neuropathology in progranulin-deficient mice. J Exp Med. 2010;207(1):117–28. PubMed PMID: 20026663. PubMed Central PMCID: 2812536.

    PubMed Central  CAS  PubMed  Google Scholar 

  124. De Muynck L, Van Damme P. Cellular effects of progranulin in health and disease. J Mol Neurosci. 2011;45(3):549–60. PubMed PMID: 21611805.

    PubMed  Google Scholar 

  125. Tang W, Lu Y, Tian QY, Zhang Y, Guo FJ, Liu GY, et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science. 2011;332(6028):478–84. PubMed PMID: 21393509. PubMed Central PMCID: 3104397.

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Baker CA, Manuelidis L. Unique inflammatory RNA profiles of microglia in Creutzfeldt-Jakob disease. Proc Natl Acad Sci U S A. 2003;100(2):675–9. PubMed PMID: 12525699. PubMed Central PMCID: 141055.

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Malaspina A, Kaushik N, de Belleroche J. Differential expression of 14 genes in amyotrophic lateral sclerosis spinal cord detected using gridded cDNA arrays. J Neurochem. 2001;77(1):132–45. PubMed PMID: 11279269.

    CAS  PubMed  Google Scholar 

  128. Philips T, De Muynck L, Thu HN, Weynants B, Vanacker P, Dhondt J, et al. Microglial upregulation of progranulin as a marker of motor neuron degeneration. J Neuropathol Exp Neurol. 2010;69(12):1191–200. PubMed PMID: 21107132.

    CAS  PubMed  Google Scholar 

  129. Pickford F, Marcus J, Camargo LM, Xiao Q, Graham D, Mo JR, et al. Progranulin is a chemoattractant for microglia and stimulates their endocytic activity. Am J Pathol. 2011;178(1):284–95. PubMed PMID: 21224065. PubMed Central PMCID: 3070582.

    PubMed Central  CAS  PubMed  Google Scholar 

  130. Del Bo R, Corti S, Santoro D, Ghione I, Fenoglio C, Ghezzi S, et al. No major progranulin genetic variability contribution to disease etiopathogenesis in an ALS Italian cohort. Neurobiol Aging. 2011;32(6):1157–8. PubMed PMID: 19632744. PubMed Central PMCID: 3511779.

    PubMed Central  PubMed  Google Scholar 

  131. Schymick JC, Yang Y, Andersen PM, Vonsattel JP, Greenway M, Momeni P, et al. Progranulin mutations and amyotrophic lateral sclerosis or amyotrophic lateral sclerosis-frontotemporal dementia phenotypes. J Neurol Neurosurg Psychiatry. 2007;78(7):754–6. PubMed PMID: 17371905. PubMed Central PMCID: 2117704.

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Nuytemans K, Pals P, Sleegers K, Engelborghs S, Corsmit E, Peeters K, et al. Progranulin variability has no major role in Parkinson disease genetic etiology. Neurology. 2008;71(15):1147–51. PubMed PMID: 18838661.

    CAS  PubMed  Google Scholar 

  133. Yu CE, Bird TD, Bekris LM, Montine TJ, Leverenz JB, Steinbart E, et al. The spectrum of mutations in progranulin: a collaborative study screening 545 cases of neurodegeneration. Arch Neurol. 2010;67(2):161–70. PubMed PMID: 20142524. PubMed Central PMCID: 2901991.

    PubMed Central  PubMed  Google Scholar 

  134. Behm-Ansmant I, Kashima I, Rehwinkel J, Sauliere J, Wittkopp N, Izaurralde E. mRNA quality control: an ancient machinery recognizes and degrades mRNAs with nonsense codons. FEBS Lett. 2007;581(15):2845–53. PubMed PMID: 17531985.

    CAS  PubMed  Google Scholar 

  135. Gass J, Cannon A, Mackenzie IR, Boeve B, Baker M, Adamson J, et al. Mutations in progranulin are a major cause of ubiquitin-positive frontotemporal lobar degeneration. Hum Mol Genet. 2006;15(20):2988–3001. PubMed PMID: 16950801.

    CAS  PubMed  Google Scholar 

  136. Le Ber I, Camuzat A, Hannequin D, Pasquier F, Guedj E, Rovelet-Lecrux A, et al. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain. 2008;131(Pt 3):732–46. PubMed PMID: 18245784.

    PubMed  Google Scholar 

  137. Gijselinck I, van der Zee J, Engelborghs S, Goossens D, Peeters K, Mattheijssens M, et al. Progranulin locus deletion in frontotemporal dementia. Hum Mutat. 2008;29(1):53–8. PubMed PMID: 18157829.

    CAS  PubMed  Google Scholar 

  138. Rovelet-Lecrux A, Deramecourt V, Legallic S, Maurage CA, Le Ber I, Brice A, et al. Deletion of the progranulin gene in patients with frontotemporal lobar degeneration or Parkinson disease. Neurobiol Dis. 2008;31(1):41–5. PubMed PMID: 18479928.

    CAS  PubMed  Google Scholar 

  139. Chen-Plotkin AS, Martinez-Lage M, Sleiman PM, Hu W, Greene R, Wood EM, et al. Genetic and clinical features of progranulin-associated frontotemporal lobar degeneration. Arch Neurol. 2011;68(4):488–97. PubMed PMID: 21482928. PubMed Central PMCID: 3160280.

    PubMed Central  PubMed  Google Scholar 

  140. Benussi L, Ghidoni R, Pegoiani E, Moretti DV, Zanetti O, Binetti G. Progranulin Leu271LeufsX10 is one of the most common FTLD and CBS associated mutations worldwide. Neurobiol Dis. 2009;33(3):379–85. PubMed PMID: 19101631.

    CAS  PubMed  Google Scholar 

  141. Borroni B, Bonvicini C, Galimberti D, Tremolizzo L, Papetti A, Archetti S, et al. Founder effect and estimation of the age of the Progranulin Thr272fs mutation in 14 Italian pedigrees with frontotemporal lobar degeneration. Neurobiol Aging. 2011;32(3):555 e1–8. PubMed PMID: 20947212.

    Google Scholar 

  142. Gijselinck I, Van Broeckhoven C, Cruts M. Granulin mutations associated with frontotemporal lobar degeneration and related disorders: an update. Human Mutat. 2008;29(12):1373–86. PubMed PMID: 18543312.

    CAS  Google Scholar 

  143. Shankaran SS, Capell A, Hruscha AT, Fellerer K, Neumann M, Schmid B, et al. Missense mutations in the progranulin gene linked to frontotemporal lobar degeneration with ubiquitin-immunoreactive inclusions reduce progranulin production and secretion. J Biol Chem. 2008;283(3):1744–53. PubMed PMID: 17984093.

    CAS  PubMed  Google Scholar 

  144. Mukherjee O, Pastor P, Cairns NJ, Chakraverty S, Kauwe JS, Shears S, et al. HDDD2 is a familial frontotemporal lobar degeneration with ubiquitin-positive, tau-negative inclusions caused by a missense mutation in the signal peptide of progranulin. Ann Neurol. 2006;60(3):314–22. PubMed PMID: 16983685. PubMed Central PMCID: 2803024.

    PubMed Central  CAS  PubMed  Google Scholar 

  145. Smith KR, Damiano J, Franceschetti S, Carpenter S, Canafoglia L, Morbin M, et al. Strikingly different clinicopathological phenotypes determined by progranulin-mutation dosage. Am J Hum Genet. 2012;90(6):1102–7. PubMed PMID: 22608501. PubMed Central PMCID: 3370276.

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Kollmann K, Uusi-Rauva K, Scifo E, Tyynela J, Jalanko A, Braulke T. Cell biology and function of neuronal ceroid lipofuscinosis-related proteins. Biochim Biophys Acta. 2013;1832(11):1866–81. PubMed PMID: 23402926.

    CAS  PubMed  Google Scholar 

  147. Petkau TL, Leavitt BR. Progranulin in neurodegenerative disease. Trends Neurosci. 2014;37(7):388–98. PubMed PMID: 24800652.

    Google Scholar 

  148. Wils H, Kleinberger G, Pereson S, Janssens J, Capell A, Van Dam D, et al. Cellular ageing, increased mortality and FTLD-TDP-associated neuropathology in progranulin knockout mice. J Pathol. 2012;228(1):67–76. PubMed PMID: 22733568.

    CAS  PubMed  Google Scholar 

  149. Tapia L, Milnerwood A, Guo A, Mills F, Yoshida E, Vasuta C, et al. Progranulin deficiency decreases gross neural connectivity but enhances transmission at individual synapses. J Neurosci. 2011;31(31):11126–32. PubMed PMID: 21813674.

    CAS  PubMed  Google Scholar 

  150. Petkau TL, Neal SJ, Milnerwood A, Mew A, Hill AM, Orban P, et al. Synaptic dysfunction in progranulin-deficient mice. Neurobiol Dis. 2012;45(2):711–22. PubMed PMID: 22062772.

    CAS  PubMed  Google Scholar 

  151. Ahmed Z, Sheng H, Xu YF, Lin WL, Innes AE, Gass J, et al. Accelerated lipofuscinosis and ubiquitination in granulin knockout mice suggest a role for progranulin in successful aging. Am J Pathol. 2010;177(1):311–24. PubMed PMID: 20522652. PubMed Central PMCID: 2893674.

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Yin F, Dumont M, Banerjee R, Ma Y, Li H, Lin MT, et al. Behavioral deficits and progressive neuropathology in progranulin-deficient mice: a mouse model of frontotemporal dementia. FASEB J. 2010;24(12):4639–47. PubMed PMID: 20667979. PubMed Central PMCID: 2992364.

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Englund E, Gustafson L, Passant U, Majounie E, Renton AE, Traynor BJ, et al. Familial Lund frontotemporal dementia caused by C9ORF72 hexanucleotide expansion. Neurobiol Aging. 2012;33(8):1850 e13–6. PubMed PMID: 22483864.

    Google Scholar 

  154. Gijselinck I, Van Langenhove T, van der Zee J, Sleegers K, Philtjens S, Kleinberger G, et al. A C9orf72 promoter repeat expansion in a Flanders-Belgian cohort with disorders of the frontotemporal lobar degeneration-amyotrophic lateral sclerosis spectrum: a gene identification study. Lancet Neurol. 2012;11(1):54–65. PubMed PMID: 22154785.

    CAS  PubMed  Google Scholar 

  155. Cruts M, Gijselinck I, Van Langenhove T, van der Zee J, Van Broeckhoven C. Current insights into the C9orf72 repeat expansion diseases of the FTLD/ALS spectrum. Trends Neurosci. 2013;36(8):450–59. PubMed PMID: 23746459.

    Google Scholar 

  156. Heutink P, Jansen IE, Lynes EM. C9orf72; abnormal RNA expression is the key. Exp Neurol. 2014;262:102–10. PubMed PMID: 24873727.

    Google Scholar 

  157. Lindquist SG, Duno M, Batbayli M, Puschmann A, Braendgaard H, Mardosiene S, et al. Corticobasal and ataxia syndromes widen the spectrum of C9ORF72 hexanucleotide expansion disease. Clin Genet. 2013;83(3):279–83. PubMed PMID: 22650353.

    CAS  PubMed  Google Scholar 

  158. Majounie E, Abramzon Y, Renton AE, Perry R, Bassett SS, Pletnikova O, et al. Repeat expansion in C9ORF72 in Alzheimer’s disease. N Eng J Med. 2012;366(3):283–4. PubMed PMID: 22216764. PubMed Central PMCID: 3513272.

    CAS  Google Scholar 

  159. Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT, Yan IK, et al. Reduced C9orf72 gene expression in c9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol. 2013;126(6):895–905. PubMed PMID: 24166615. PubMed Central PMCID: 3830740.

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Waite AJ, Baumer D, East S, Neal J, Morris HR, Ansorge O, et al. Reduced C9orf72 protein levels in frontal cortex of amyotrophic lateral sclerosis and frontotemporal degeneration brain with the C9ORF72 hexanucleotide repeat expansion. Neurobiol Aging. 2014;35(7):1779.e5–1779.e13. PubMed PMID: 24559645.

    Google Scholar 

  161. Farg MA, Sundaramoorthy V, Sultana JM, Yang S, Atkinson RA, Levina V, et al. C9ORF72, implicated in amyotrophic lateral sclerosis and frontotemporal dementia, regulates endosomal trafficking. Hum Mol Genet. 2014;23(13):3579–595. PubMed PMID: 24549040.

    Google Scholar 

  162. Donnelly CJ, Zhang PW, Pham JT, Heusler AR, Mistry NA, Vidensky S, et al. RNA toxicity from the ALS/FTD C9ORF72 expansion is mitigated by antisense intervention. Neuron. 2013;80(2):415–28. PubMed PMID: 24139042.

    PubMed Central  CAS  PubMed  Google Scholar 

  163. Sareen D, O’Rourke JG, Meera P, Muhammad AK, Grant S, Simpkinson M, et al. Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion. Sci Transl Med. 2013;5(208):208ra149. PubMed PMID: 24154603.

    PubMed Central  PubMed  Google Scholar 

  164. Zhang D, Iyer LM, He F, Aravind L. Discovery of novel DENN proteins: implications for the evolution of eukaryotic intracellular membrane structures and human disease. Front Genet. 2012;3:283. PubMed PMID: 23248642. PubMed Central PMCID: 3521125.

    PubMed Central  PubMed  Google Scholar 

  165. Levine TP, Daniels RD, Gatta AT, Wong LH, Hayes MJ. The product of C9orf72, a gene strongly implicated in neurodegeneration, is structurally related to DENN Rab-GEFs. Bioinformatics. 2013;29(4):499–503. PubMed PMID: 23329412. PubMed Central PMCID: 3570213.

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Almeida S, Gascon E, Tran H, Chou HJ, Gendron TF, Degroot S, et al. Modeling key pathological features of frontotemporal dementia with C9ORF72 repeat expansion in iPSC-derived human neurons. Acta Neuropathol. 2013;126(3):385–99. PubMed PMID: 23836290. PubMed Central PMCID: 3753484.

    PubMed Central  CAS  PubMed  Google Scholar 

  167. Majounie E, Renton AE, Mok K, Dopper EG, Waite A, Rollinson S, et al. Frequency of the C9orf72 hexanucleotide repeat expansion in patients with amyotrophic lateral sclerosis and frontotemporal dementia: a cross-sectional study. Lancet Neurol. 2012;11(4):323–30. PubMed PMID: 22406228. PubMed Central PMCID: 3322422.

    PubMed Central  CAS  PubMed  Google Scholar 

  168. van der Zee J, Gijselinck I, Dillen L, Van Langenhove T, Theuns J, Engelborghs S, et al. A pan-European study of the C9orf72 repeat associated with FTLD: geographic prevalence, genomic instability, and intermediate repeats. Hum Mutat. 2013;34(2):363–73. PubMed PMID: 23111906. PubMed Central PMCID: 3638346.

    PubMed Central  PubMed  Google Scholar 

  169. Ciura S, Lattante S, Le Ber I, Latouche M, Tostivint H, Brice A, et al. Loss of function of C9orf72 causes motor deficits in a zebrafish model of amyotrophic lateral sclerosis. Ann Neurol. 2013;74(2):180–87. PubMed PMID: 23720273.

    Google Scholar 

  170. Mori K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, et al. The C9orf72 GGGGCC repeat is translated into aggregating dipeptide-repeat proteins in FTLD/ALS. Science. 2013;339(6125):1335–8. PubMed PMID: 23393093.

    CAS  PubMed  Google Scholar 

  171. Greene E, Mahishi L, Entezam A, Kumari D, Usdin K. Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia. Nucleic Acids Res. 2007;35(10):3383–90. PubMed PMID: 17478498. PubMed Central PMCID: 1904289.

    PubMed Central  CAS  PubMed  Google Scholar 

  172. Sutcliffe JS, Nelson DL, Zhang F, Pieretti M, Caskey CT, Saxe D, et al. DNA methylation represses FMR-1 transcription in fragile X syndrome. Hum Mol Genet. 1992;1(6):397–400. PubMed PMID: 1301913.

    CAS  PubMed  Google Scholar 

  173. Xi Z, Zinman L, Moreno D, Schymick J, Liang Y, Sato C, et al. Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am J Hum Genet. 2013;92(6):981–9. PubMed PMID: 23731538. PubMed Central PMCID: 3675239.

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Wojciechowska M, Krzyzosiak WJ. Cellular toxicity of expanded RNA repeats: focus on RNA foci. Hum Mol Genet. 2011;20(19):3811–21. PubMed PMID: 21729883. PubMed Central PMCID: 3168290.

    PubMed Central  CAS  PubMed  Google Scholar 

  175. Mizielinska S, Lashley T, Norona FE, Clayton EL, Ridler CE, Fratta P, et al. C9orf72 frontotemporal lobar degeneration is characterised by frequent neuronal sense and antisense RNA foci. Acta Neuropathol. 2013;126(6):845–57. PubMed PMID: 24170096.

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Lagier-Tourenne C, Baughn M, Rigo F, Sun S, Liu P, Li HR, et al. Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration. Proc Natl Acad Sci U S A. 2013;110(47):E4530–9. PubMed PMID: 24170860.

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Fratta P, Mizielinska S, Nicoll AJ, Zloh M, Fisher EM, Parkinson G, et al. C9orf72 hexanucleotide repeat associated with amyotrophic lateral sclerosis and frontotemporal dementia forms RNA G-quadruplexes. Sci Rep. 2012;2:1016. PubMed PMID: 23264878. PubMed Central PMCID: 3527825.

    PubMed Central  PubMed  Google Scholar 

  178. Zamiri B, Reddy K, Macgregor Jr RB, Pearson CE. TMPyP4 porphyrin distorts RNA G-quadruplex structures of the disease-associated r(GGGGCC)n repeat of the C9orf72 gene and blocks interaction of RNA-binding proteins. J Biol Chem. 2014;289(8):4653–9. PubMed PMID: 24371143.

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Haeusler AR, Donnelly CJ, Periz G, Simko EA, Shaw PG, Kim MS, et al. C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature. 2014;507(7491):195–200. PubMed PMID: 24598541.

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Xu Z, Poidevin M, Li X, Li Y, Shu L, Nelson DL, et al. Expanded GGGGCC repeat RNA associated with amyotrophic lateral sclerosis and frontotemporal dementia causes neurodegeneration. Proc Natl Acad Sci U S A. 2013;110(19):7778–83. PubMed PMID: 23553836. PubMed Central PMCID: 3651485.

    PubMed Central  CAS  PubMed  Google Scholar 

  181. Mori K, Lammich S, Mackenzie IR, Forne I, Zilow S, Kretzschmar H, et al. hnRNP A3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol. 2013;125(3):413–23. PubMed PMID: 23381195.

    CAS  PubMed  Google Scholar 

  182. Ash PE, Bieniek KF, Gendron TF, Caulfield T, Lin WL, Dejesus-Hernandez M, et al. Unconventional translation of C9ORF72 GGGGCC expansion generates insoluble polypeptides specific to c9FTD/ALS. Neuron. 2013;77(4):639–46. PubMed PMID: 23415312. Pubmed Central PMCID: 3593233.

    PubMed Central  CAS  PubMed  Google Scholar 

  183. Zu T, Gibbens B, Doty NS, Gomes-Pereira M, Huguet A, Stone MD, et al. Non-ATG-initiated translation directed by microsatellite expansions. Proc Natl Acad Sci U S A. 2011;108(1):260–5. PubMed PMID: 21173221. PubMed Central PMCID: 3017129.

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Mori K, Arzberger T, Grasser FA, Gijselinck I, May S, Rentzsch K, et al. Bidirectional transcripts of the expanded C9orf72 hexanucleotide repeat are translated into aggregating dipeptide repeat proteins. Acta Neuropathol. 2013;126(6):881–93. PubMed PMID: 24132570.

    CAS  PubMed  Google Scholar 

  185. Kwon I, Xiang S, Kato M, Wu L, Theodoropoulos P, Wang T, et al. Poly-dipeptides encoded by the C9ORF72 repeats bind nucleoli, impede RNA biogenesis, and kill cells. Science. 2014;345(6201):1139–145. PubMed PMID: 25081482.

    Google Scholar 

  186. Mizielinska S, Gronke S, Niccoli T, Ridler CE, Clayton EL, Devoy A, et al. C9orf72 repeat expansions cause neurodegeneration in Drosophila through arginine-rich proteins. Science. 2014;345(6201):1192–194. PubMed PMID: 25103406.

    Google Scholar 

  187. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, et al. Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet. 2004;36(4):377–81. PubMed PMID: 15034582.

    Google Scholar 

  188. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, et al. Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron. 2010;68(5):857–64. PubMed PMID: 21145000. PubMed Central PMCID: 3032425.

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Dai RM, Li CC. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat Cell Biol. 2001;3(8):740–4. PubMed PMID: 11483959.

    CAS  PubMed  Google Scholar 

  190. Ju JS, Weihl CC. Inclusion body myopathy, Paget’s disease of the bone and fronto-temporal dementia: a disorder of autophagy. Hum Mol Genet. 2010;19(R1):R38–45. PubMed PMID: 20410287. PubMed Central PMCID: 2875057.

    PubMed Central  CAS  PubMed  Google Scholar 

  191. Weihl CC, Pestronk A, Kimonis VE. Valosin-containing protein disease: inclusion body myopathy with Paget’s disease of the bone and fronto-temporal dementia. Neuromuscul Disord: NMD. 2009;19(5):308–15. PubMed PMID: 19380227. PubMed Central PMCID: 2859037.

    PubMed Central  PubMed  Google Scholar 

  192. Badadani M, Nalbandian A, Watts GD, Vesa J, Kitazawa M, Su H, et al. VCP associated inclusion body myopathy and paget disease of bone knock-in mouse model exhibits tissue pathology typical of human disease. PLoS One. 2010;5(10):pii:e13183.

    Google Scholar 

  193. Custer SK, Neumann M, Lu H, Wright AC, Taylor JP. Transgenic mice expressing mutant forms VCP/p97 recapitulate the full spectrum of IBMPFD including degeneration in muscle, brain and bone. Hum Mol Genet. 2010;19(9):1741–55. PubMed PMID: 20147319.

    CAS  PubMed  Google Scholar 

  194. Skibinski G, Parkinson NJ, Brown JM, Chakrabarti L, Lloyd SL, Hummerich H, et al. Mutations in the endosomal ESCRTIII-complex subunit CHMP2B in frontotemporal dementia. Nat Genet. 2005;37(8):806–8. PubMed PMID: 16041373.

    CAS  PubMed  Google Scholar 

  195. Cox LE, Ferraiuolo L, Goodall EF, Heath PR, Higginbottom A, Mortiboys H, et al. Mutations in CHMP2B in lower motor neuron predominant amyotrophic lateral sclerosis (ALS). PLoS One. 2010;5(3):e9872. PubMed PMID: 20352044. PubMed Central PMCID: 2844426.

    PubMed Central  PubMed  Google Scholar 

  196. Urwin H, Authier A, Nielsen JE, Metcalf D, Powell C, Froud K, et al. Disruption of endocytic trafficking in frontotemporal dementia with CHMP2B mutations. Hum Mol Genet. 2010;19(11):2228–38. PubMed PMID: 20223751. PubMed Central PMCID: 2865375.

    PubMed Central  CAS  PubMed  Google Scholar 

  197. Ghazi-Noori S, Froud KE, Mizielinska S, Powell C, Smidak M, et al. Progressive neuronal inclusion formation and axonal degeneration in CHMP2B mutant transgenic mice. Brain. 2012;135(Pt 3):819–32. PubMed PMID: 22366797.

    PubMed  Google Scholar 

  198. Buratti E, Dork T, Zuccato E, Pagani F, Romano M, Baralle FE. Nuclear factor TDP-43 and SR proteins promote in vitro and in vivo CFTR exon 9 skipping. EMBO J. 2001;20(7):1774–84. PubMed PMID: 11285240. PubMed Central PMCID: 145463.

    PubMed Central  CAS  PubMed  Google Scholar 

  199. Colombrita C, Onesto E, Megiorni F, Pizzuti A, Baralle F, Buratti E, et al. TDP-43 and FUS RNA-binding proteins bind distinct sets of cytoplasmic messenger RNAs and differently regulate their post-transcriptional fate in motoneuron-like cells. J Biol Chem. 2012;287(19):15635–47.

    PubMed Central  CAS  PubMed  Google Scholar 

  200. Ou SH, Wu F, Harrich D, Garcia-Martinez LF, Gaynor RB. Cloning and characterization of a novel cellular protein, TDP-43, that binds to human immunodeficiency virus type 1 TAR DNA sequence motifs. J Virol. 1995;69(6):3584–96. PubMed PMID: 7745706. PubMed Central PMCID: 189073.

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Da Cruz S, Cleveland DW. Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol. 2011;21(6):904–19. PubMed PMID: 21813273. PubMed Central PMCID: 3228892.

    PubMed Central  PubMed  Google Scholar 

  202. Lee EB, Lee VM, Trojanowski JQ. Gains or losses: molecular mechanisms of TDP43-mediated neurodegeneration. Nat Rev Neurosci. 2012;13(1):38–50. PubMed PMID: 22127299. PubMed Central PMCID: 3285250.

    CAS  Google Scholar 

  203. Kwiatkowski Jr TJ, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, et al. Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science. 2009;323(5918):1205–8. PubMed PMID: 19251627.

    CAS  PubMed  Google Scholar 

  204. Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, et al. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science. 2009;323(5918):1208–11. PubMed PMID: 19251628.

    CAS  PubMed  Google Scholar 

  205. Neumann M, Bentmann E, Dormann D, Jawaid A, DeJesus-Hernandez M, Ansorge O, et al. FET proteins TAF15 and EWS are selective markers that distinguish FTLD with FUS pathology from amyotrophic lateral sclerosis with FUS mutations. Brain. 2011;134(Pt 9):2595–609. PubMed PMID: 21856723. PubMed Central PMCID: 3170539.

    PubMed Central  PubMed  Google Scholar 

  206. Lagier-Tourenne C, Polymenidou M, Cleveland DW. TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet. 2010;19(R1):R46–64. PubMed PMID: 20400460. PubMed Central PMCID: 3167692.

    PubMed Central  CAS  PubMed  Google Scholar 

  207. Dormann D, Haass C. Fused in sarcoma (FUS): an oncogene goes awry in neurodegeneration. Mol Cell Neurosci. 2013;56:475–86. PubMed PMID: 23557964.

    CAS  PubMed  Google Scholar 

  208. van der Zee J, Van Langenhove T, Kleinberger G, Sleegers K, Engelborghs S, Vandenberghe R, et al. TMEM106B is associated with frontotemporal lobar degeneration in a clinically diagnosed patient cohort. Brain. 2011;134(Pt 3):808–15. PubMed PMID: 21354975. PubMed Central PMCID: 3044834.

    PubMed Central  PubMed  Google Scholar 

  209. Finch N, Carrasquillo MM, Baker M, Rutherford NJ, Coppola G, Dejesus-Hernandez M, et al. TMEM106B regulates progranulin levels and the penetrance of FTLD in GRN mutation carriers. Neurology. 2011;76(5):467–74. PubMed PMID: 21178100. PubMed Central PMCID: 3034409.

    PubMed Central  CAS  PubMed  Google Scholar 

  210. Cruchaga C, Graff C, Chiang HH, Wang J, Hinrichs AL, Spiegel N, et al. Association of TMEM106B gene polymorphism with age at onset in granulin mutation carriers and plasma granulin protein levels. Arch Neurol. 2011;68(5):581–6. PubMed PMID: 21220649. PubMed Central PMCID: 3090529.

    PubMed Central  PubMed  Google Scholar 

  211. Lang CM, Fellerer K, Schwenk BM, Kuhn PH, Kremmer E, Edbauer D, et al. Membrane orientation and subcellular localization of transmembrane protein 106B (TMEM106B), a major risk factor for frontotemporal lobar degeneration. J Biol Chem. 2012;287(23):19355–65. PubMed PMID: 22511793. PubMed Central PMCID: 3365973.

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Brady OA, Zheng Y, Murphy K, Huang M, Hu F. The frontotemporal lobar degeneration risk factor, TMEM106B, regulates lysosomal morphology and function. Hum Mol Genet. 2013;22(4):685–95. PubMed PMID: 23136129. PubMed Central PMCID: 3554197.

    PubMed Central  CAS  PubMed  Google Scholar 

  213. Busch JI, Martinez-Lage M, Ashbridge E, Grossman M, Van Deerlin VM, Hu F, et al. Expression of TMEM106B, the frontotemporal lobar degeneration-associated protein, in normal and diseased human brain. Acta Neuropathol Commun. 2013;1(1):36. PubMed PMID: 24252750. PubMed Central PMCID: 3893524.

    PubMed Central  PubMed  Google Scholar 

  214. Chen-Plotkin AS, Unger TL, Gallagher MD, Bill E, Kwong LK, Volpicelli-Daley L, et al. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the microRNA-132/212 cluster and affects progranulin pathways. J Neurosci. 2012;32(33):11213–27. PubMed PMID: 22895706. PubMed Central PMCID: 3446826.

    PubMed Central  CAS  PubMed  Google Scholar 

  215. Deng HX, Chen W, Hong ST, Boycott KM, Gorrie GH, Siddique N, et al. Mutations in UBQLN2 cause dominant X-linked juvenile and adult-onset alS and ALS/dementia. Nature. 2011;477(7363):211–5. PubMed PMID: 21857683. PubMed Central PMCID: 3169705.

    Google Scholar 

  216. Fecto F, Yan J, Vemula SP, Liu E, Yang Y, Chen W, et al. SQSTM1 mutations in familial and sporadic amyotrophic lateral sclerosis. Arch Neurol. 2011;68(11):1440–6. PubMed PMID: 22084127.

    PubMed  Google Scholar 

  217. Le Ber I, Camuzat A, Guerreiro R, Bouya-Ahmed K, Bras J, Nicolas G, et al. SQSTM1 mutations in French patients with frontotemporal dementia or frontotemporal dementia with amyotrophic lateral sclerosis. JAMA Neurol. 2013;70(11):1403–10. PubMed PMID: 24042580.

    PubMed Central  PubMed  Google Scholar 

  218. Rubino E, Rainero I, Chio A, Rogaeva E, Galimberti D, Fenoglio P, et al. SQSTM1 mutations in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Neurology. 2012;79(15):1556–62. PubMed PMID: 22972638. PubMed Central PMCID: 3655323.

    PubMed Central  PubMed  Google Scholar 

  219. Liu Y, Yu JT, Sun FR, Ou JR, Qu SB, Tan L. The clinical and pathological phenotypes of frontotemporal dementia with C9ORF72 mutations. J Neurol Sci. 2013;335(1–2):26–35. PubMed PMID: 24090760.

    Google Scholar 

  220. Rademakers R, Eriksen JL, Baker M, Robinson T, Ahmed Z, Lincoln SJ, et al. Common variation in the miR-659 binding-site of GRN is a major risk factor for TDP43-positive frontotemporal dementia. Hum Mol Genet. 2008;17(23):3631–42. PubMed PMID: 18723524. PubMed Central PMCID: 2581433.

    PubMed Central  CAS  PubMed  Google Scholar 

  221. Simon-Sanchez J, Seelaar H, Bochdanovits Z, Deeg DJ, van Swieten JC, Heutink P. Variation at GRN 3′-UTR rs5848 is not associated with a risk of frontotemporal lobar degeneration in Dutch population. PLoS One. 2009;4(10):e7494. PubMed PMID: 19847305. PubMed Central PMCID: 2761542.

    PubMed Central  PubMed  Google Scholar 

  222. Rollinson S, Rohrer JD, van der Zee J, Sleegers K, Mead S, Engelborghs S, et al. No association of PGRN 3′UTR rs5848 in frontotemporal lobar degeneration. Neurobiol Aging. 2011;32(4):754–5. PubMed PMID: 19446372.

    CAS  PubMed  Google Scholar 

  223. Dickson DW, Baker M, Rademakers R. Common variant in GRN is a genetic risk factor for hippocampal sclerosis in the elderly. Neurodegener Dis. 2010;7(1–3):170–4. PubMed PMID: 20197700. PubMed Central PMCID: 2859236.

    PubMed Central  CAS  PubMed  Google Scholar 

  224. Pao WC, Dickson DW, Crook JE, Finch NA, Rademakers R, Graff-Radford NR. Hippocampal sclerosis in the elderly: genetic and pathologic findings, some mimicking Alzheimer disease clinically. Alzheimer Dis Assoc Disord. 2011;25(4):364–8. PubMed PMID: 21346515. PubMed Central PMCID: 3107353.

    PubMed Central  PubMed  Google Scholar 

  225. Hsiung GY, Fok A, Feldman HH, Rademakers R, Mackenzie IR. rs5848 polymorphism and serum progranulin level. J Neurol Sci. 2011;300(1–2):28–32. PubMed PMID: 21047645. PubMed Central PMCID: 3085023.

    PubMed Central  CAS  PubMed  Google Scholar 

  226. Kamalainen A, Viswanathan J, Natunen T, Helisalmi S, Kauppinen T, Pikkarainen M, et al. GRN variant rs5848 reduces plasma and brain levels of granulin in Alzheimer’s disease patients. J Alzheimers Dis. 2013;33(1):23–7. PubMed PMID: 22890097.

    CAS  PubMed  Google Scholar 

  227. van Blitterswijk M, Mullen B, Nicholson AM, Bieniek KF, Heckman MG, Baker MC, et al. TMEM106B protects C9ORF72 expansion carriers against frontotemporal dementia. Acta Neuropathol. 2014;127(3):397–406. PubMed PMID: 24385136.

    PubMed Central  PubMed  Google Scholar 

  228. Gallagher MD, Suh E, Grossman M, Elman L, McCluskey L, Van Swieten JC, et al. TMEM106B is a genetic modifier of frontotemporal lobar degeneration with C9orf72 hexanucleotide repeat expansions. Acta Neuropathol. 2014;127(3):407–18. PubMed PMID: 24442578.

    PubMed Central  CAS  PubMed  Google Scholar 

  229. van Blitterswijk M, Baker MC, DeJesus-Hernandez M, Ghidoni R, Benussi L, Finger E, et al. C9ORF72 repeat expansions in cases with previously identified pathogenic mutations. Neurology. 2013;81(15):1332–41. PubMed PMID: 24027057. PubMed Central PMCID: 3806926.

    PubMed Central  PubMed  Google Scholar 

  230. Lashley T, Rohrer JD, Mahoney C, Gordon E, Beck J, Mead S, et al. A pathogenic progranulin mutation and C9orf72 repeat expansion in a family with frontotemporal dementia. Neuropath Appl Neurobiol. 2013;40(4):502–13. PubMed PMID: 24286341.

    Google Scholar 

  231. Polymenidou M, Lagier-Tourenne C, Hutt K, Huelga S, Moran J, Liang T, et al. Long pre-mRNA depletion and RNA missplicing contribute to neuronal vulnerability from loss of TDP-43. Nat Neurosci. 2011;14(4):459–68.

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Disclosure

Peter Heutink is a co-applicant on a patent application related to MAPT (PCT/US1999/009529) and C9orf72 (PCT/GB2012/052140) and is co-owner of Synaptologics BV.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Heutink MSc, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Heetveld, S., Rizzu, P., Heutink, P. (2015). Genetics of Frontotemporal Dementia. In: Schneider, S., Brás, J. (eds) Movement Disorder Genetics. Springer, Cham. https://doi.org/10.1007/978-3-319-17223-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17223-1_5

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17222-4

  • Online ISBN: 978-3-319-17223-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics