Skip to main content

New Indications for HSP90 and HSP70 Inhibitors as Antiviral Drugs

  • Chapter
Book cover Heat Shock Protein-Based Therapies

Part of the book series: Heat Shock Proteins ((HESP,volume 9))

  • 1105 Accesses

Abstract

Viruses infect host cells and elicit a broad range of ailments. The viral genome is relatively small and therefore viruses are reliant on host factors throughout the viral lifecycle. The molecular chaperones, heat shock proteins 70 (HSP70) and 90 (HSP90), have been shown to be host factors that are utilized by a wide range of viruses, including HIV, influenza, polioviurs, and dengue virus for replication and propagation. There is an observed increase in HSP70 and HSP90 expression following viral infection. Additionally, HSP70 and HSP90 regulate anti-apoptotic pathways and assist in the proper folding of newly synthesized proteins during the viral lifecycle. The utilization of HSP70 and HSP90 in viral propagation is similar to the roles of these proteins in cancer progression. Small molecule inhibitors have been developed for both HSP70 and HSP90 as anticancer therapeutics, but there is recent evidence to suggest these inhibitors have indications as antiviral drugs. This chapter aims to highlight the roles of HSP70 and HSP90 in the lifecycle of numerous viruses. Furthermore, this will highlight the potential for already developed HSP70 and HSP90 inhibitors as antivirals and the development of further antiviral drugs targeting these proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

17-AAG:

17-N-allylamino-17-demethoxygeldanamycin

17-DMAG:

1 7-Dimethylaminoethylamino-17-demethoxygeldanamycin

Aha1:

Activator of heat shock 90 kDa protein ATPase homolog 1

Apaf-1:

Apoptotic protease-activating factor-1

Azt:

Azidothymidine

Bax:

Bcl2-associated X protein

Bcl-2:

B-cell lymphoma-2

Cdc37:

Cell division cycle 37

Cdk9:

Cyclin-dependent kinase 9

CHIP:

Carboxyl-terminus of HSP70 interacting protein

Cyp40:

Cyclophilin 40

E1A:

Early region 1A

FLIP(S):

FLICE inhibitory protein

GRP75//78/94:

Glucose regulated protein 75/78/94

Hip:

HSP70-interacting protein

Hop:

HSP70-HSP90 organizing protein

JNK:

c-Jun N-terminal kinase

pRB:

Retinoblastoma protein

TPR:

Tetratricopeptide repeat

VP1/2/3/4/7:

Viral protein 1/2/3/4/7

References

  1. Daugaard M, Rohde M, Jaattela M (2007) The heat shock protein 70 family: highly homologous proteins with overlapping and distinct functions. FEBS Lett 581:3702–3710

    Article  CAS  PubMed  Google Scholar 

  2. Wiech H, Buchner J, Zimmermann R, Jakob U (1992) Hsp90 chaperones protein folding in vitro. Nature 358:169–170

    Article  CAS  PubMed  Google Scholar 

  3. Hunt C, Morimoto RI (1985) Conserved features of eukaryotic hsp70 genes revealed by comparison with the nucleotide sequence of human hsp70. Proc Natl Acad Sci U S A 82:6455–6459

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Pearl LH, Prodromou C (2006) Structure and mechanism of the Hsp90 molecular chaperone machinery. Annu Rev Biochem 75:271–294

    Article  CAS  PubMed  Google Scholar 

  5. Johnson JL (2012) Evolution and function of diverse Hsp90 homologs and cochaperone proteins. Biochim Biophys Acta 1823:607–613

    Article  CAS  PubMed  Google Scholar 

  6. Chen B, Piel WH, Gui L, Bruford E, Monteiro A (2005) The HSP90 family of genes in the human genome: insights into their divergence and evolution. Genomics 86:627–637

    Article  CAS  PubMed  Google Scholar 

  7. Pearl LH (2005) Hsp90 and Cdc37 – a chaperone cancer conspiracy. Curr Opin Genet Dev 15:55–61

    Article  CAS  PubMed  Google Scholar 

  8. Pratt WB, Toft DO (2003) Regulation of signaling protein function and trafficking by the hsp90/hsp70-based chaperone machinery. Exp Biol Med (Maywood) 228:111–133

    CAS  Google Scholar 

  9. Bertelsen EB, Chang L, Gestwicki JE, Zuiderweg ER (2009) Solution conformation of wild-type E. coli Hsp70 (DnaK) chaperone complexed with ADP and substrate. Proc Natl Acad Sci U S A 106:8471–8476

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Shiau AK, Harris SF, Southworth DR, Agard DA (2006) Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127:329–340

    Article  CAS  PubMed  Google Scholar 

  11. Tavaria M, Gabriele T, Kola I, Anderson RL (1996) A hitchhiker's guide to the human Hsp70 family. Cell Stress Chaperones 1:23–28

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Hohfeld J, Cyr DM, Patterson C (2001) From the cradle to the grave: molecular chaperones that may choose between folding and degradation. EMBO Rep 2:885–890

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ramos C (2011) Molecular chaperones and protein quality control. Protein Pept Lett 18:100

    Article  CAS  PubMed  Google Scholar 

  14. Barrott JJ, Haystead TA (2013) Hsp90, an unlikely ally in the war on cancer. FEBS J 280:1381–1396

    Article  CAS  PubMed  Google Scholar 

  15. Chen S, Sullivan WP, Toft DO, Smith DF (1998) Differential interactions of p23 and the TPR-containing proteins Hop, Cyp40, FKBP52 and FKBP51 with Hsp90 mutants. Cell Stress Chaperones 3:118–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Lotz GP, Lin H, Harst A, Obermann WM (2003) Aha1 binds to the middle domain of Hsp90, contributes to client protein activation, and stimulates the ATPase activity of the molecular chaperone. J Biol Chem 278:17228–17235

    Article  CAS  PubMed  Google Scholar 

  17. Gray PJ Jr, Prince T, Cheng J, Stevenson MA, Calderwood SK (2008) Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer 8:491–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Johnson JL, Toft DO (1995) Binding of p23 and hsp90 during assembly with the progesterone receptor. Mol Endocrinol 9:670–678

    CAS  PubMed  Google Scholar 

  19. Massey AJ (2010) ATPases as drug targets: insights from heat shock proteins 70 and 90. J Med Chem 53:7280–7286

    Article  CAS  PubMed  Google Scholar 

  20. Evans CG, Chang L, Gestwicki JE (2010) Heat shock protein 70 (hsp70) as an emerging drug target. J Med Chem 53:4585–4602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Shu CW, Huang CM (2008) HSP70s: from tumor transformation to cancer therapy. Clin Med Oncol 2:335–345

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Jego G, Hazoume A, Seigneuric R, Garrido C (2013) Targeting heat shock proteins in cancer. Cancer Lett 332:275–285

    Article  CAS  PubMed  Google Scholar 

  23. Goloudina AR, Demidov ON, Garrido C (2012) Inhibition of HSP70: a challenging anti-cancer strategy. Cancer Lett 325:117–124

    Article  CAS  PubMed  Google Scholar 

  24. Panner A, Murray JC, Berger MS, Pieper RO (2007) Heat shock protein 90alpha recruits FLIPS to the death-inducing signaling complex and contributes to TRAIL resistance in human glioma. Cancer Res 67:9482–9489

    Article  CAS  PubMed  Google Scholar 

  25. Cohen-Saidon C, Carmi I, Keren A, Razin E (2006) Antiapoptotic function of Bcl-2 in mast cells is dependent on its association with heat shock protein 90beta. Blood 107:1413–1420

    Article  CAS  PubMed  Google Scholar 

  26. Yang X, Wang J, Zhou Y, Wang Y, Wang S, Zhang W (2012) Hsp70 promotes chemoresistance by blocking Bax mitochondrial translocation in ovarian cancer cells. Cancer Lett 321:137–143

    Article  CAS  PubMed  Google Scholar 

  27. Beere HM (2001) Stressed to death: regulation of apoptotic signaling pathways by the heat shock proteins. Sci STKE 2001:re1

    Google Scholar 

  28. Park HS, Lee JS, Huh SH, Seo JS, Choi EJ (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20:446–456

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Pandey P, Saleh A, Nakazawa A, Kumar S, Srinivasula SM, Kumar V, Weichselbaum R, Nalin C, Alnemri ES, Kufe D, Kharbanda S (2000) Negative regulation of cytochrome c-mediated oligomerization of Apaf-1 and activation of procaspase-9 by heat shock protein 90. EMBO J 19:4310–4322

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Joly AL, Wettstein G, Mignot G, Ghiringhelli F, Garrido C (2010) Dual role of heat shock proteins as regulators of apoptosis and innate immunity. J Innate Immun 2:238–247

    Article  CAS  PubMed  Google Scholar 

  31. Fadden P, Huang KH, Veal JM, Steed PM, Barabasz AF, Foley B, Hu M, Partridge JM, Rice J, Scott A, Dubois LG, Freed TA, Silinski MA, Barta TE, Hughes PF, Ommen A, Ma W, Smith ED, Spangenberg AW, Eaves J, Hanson GJ, Hinkley L, Jenks M, Lewis M, Otto J, Pronk GJ, Verleysen K, Haystead TA, Hall SE (2010) Application of chemoproteomics to drug discovery: identification of a clinical candidate targeting hsp90. Chem Biol 17:686–694

    Article  CAS  PubMed  Google Scholar 

  32. Qi R, Sarbeng EB, Liu Q, Le KQ, Xu X, Xu H, Yang J, Wong JL, Vorvis C, Hendrickson WA, Zhou L, Liu Q (2013) Allosteric opening of the polypeptide-binding site when an Hsp70 binds ATP. Nat Struct Mol Biol 20:900–907

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Assimon VA, Gillies AT, Rauch JN, Gestwicki JE (2013) Hsp70 protein complexes as drug targets. Curr Pharm Des 19:404–417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Taldone T, Kang Y, Patel HJ, Patel MR, Patel PD, Rodina A, Patel Y, Gozman A, Maharaj R, Clement CC, Lu A, Young JC, Chiosis G (2014) Heat shock protein 70 inhibitors. 2. 2,5′-thiodipyrimidines, 5-(phenylthio)pyrimidines, 2-(pyridin-3-ylthio)pyrimidines, and 3-(phenylthio)pyridines as reversible binders to an allosteric site on heat shock protein 70. J Med Chem 57:1208–1224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Howe MK et al (2014) Identification of an allosteric small-molecule inhibitor selective for the inducible form of heat shock protein 70. Chem Biol 21(12):1648–1659

    Article  CAS  PubMed  Google Scholar 

  36. Cobbold C, Windsor M, Wileman T (2001) A virally encoded chaperone specialized for folding of the major capsid protein of African swine fever virus. J Virol 75:7221–7229

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Brenner BG, Wainberg MA (1999) Heat shock protein-based therapeutic strategies against human immunodeficiency virus type 1 infection. Infect Dis Obstet Gynecol 7:80–90

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Reyes-Del Valle J, Chavez-Salinas S, Medina F, Del Angel RM (2005) Heat shock protein 90 and heat shock protein 70 are components of dengue virus receptor complex in human cells. J Virol 79:4557–4567

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Choukhi A, Ung S, Wychowski C, Dubuisson J (1998) Involvement of endoplasmic reticulum chaperones in the folding of hepatitis C virus glycoproteins. J Virol 72:3851–3858

    CAS  PubMed Central  PubMed  Google Scholar 

  40. Ujino S, Yamaguchi S, Shimotohno K, Takaku H (2009) Heat-shock protein 90 is essential for stabilization of the hepatitis C virus nonstructural protein NS3. J Biol Chem 284:6841–6846

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Okamoto T, Nishimura Y, Ichimura T, Suzuki K, Miyamura T, Suzuki T, Moriishi K, Matsuura Y (2006) Hepatitis C virus RNA replication is regulated by FKBP8 and Hsp90. EMBO J 25:5015–5025

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Lefeuvre A et al (2006) Host-cell interaction of attenuated and wild-type strains of yellow fever virus can be differentiated at early stages of hepatocyte infection. Microbes Infect 8(6):1530–1538

    Article  CAS  PubMed  Google Scholar 

  43. Cho DY et al (2003) Molecular chaperone GRP78/BiP interacts with the large surface protein of hepatitis B virus in vitro and in vivo. J Virol 77(4):2784–2788

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Hu J, Flores D, Toft D, Wang X, Nguyen D (2004) Requirement of heat shock protein 90 for human hepatitis B virus reverse transcriptase function. J Virol 78:13122–13131

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Tanguy Le Gac N, Boehmer PE (2002) Activation of the herpes simplex virus type-1 origin-binding protein (UL9) by heat shock proteins. J Biol Chem 277:5660–5666

    Article  PubMed  CAS  Google Scholar 

  46. Burch AD, Weller SK (2005) Herpes simplex virus type 1 DNA polymerase requires the mammalian chaperone hsp90 for proper localization to the nucleus. J Virol 79:10740–10749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Cheung RK, Dosch HM (1993) The growth transformation of human B cells involves superinduction of hsp70 and hsp90. Virology 193:700–708

    Article  CAS  PubMed  Google Scholar 

  48. Kitay MK, Rowe DT (1996) Protein-protein interactions between Epstein-Barr virus nuclear antigen-LP and cellular gene products: binding of 70-kilodalton heat shock proteins. Virology 220(1):91–99

    Article  CAS  PubMed  Google Scholar 

  49. Jeon YK, Park CH, Kim KY, Li YC, Kim J, Kim YA, Paik JH, Park BK, Kim CW, Kim YN (2007) The heat-shock protein 90 inhibitor, geldanamycin, induces apoptotic cell death in Epstein-Barr virus-positive NK/T-cell lymphoma by Akt down-regulation. J Pathol 213:170–179

    Article  CAS  PubMed  Google Scholar 

  50. Kyratsous CA, Silverstein SJ (2007) BAG3, a host cochaperone, facilitates varicella-zoster virus replication. J Virol 81:7491–7503

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Sagara J, Kawai A (1992) Identification of heat shock protein 70 in the rabies virion. Virology 190(2):845–848

    Article  CAS  PubMed  Google Scholar 

  52. Manzoor R et al (2014) Heat shock protein 70 modulates influenza A virus polymerase activity. J Biol Chem 289(11):7599–7614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Naito T et al (2007) Involvement of Hsp90 in assembly and nuclear import of influenza virus RNA polymerase subunits. J Virol 81(3):1339–1349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Liao WJ et al (2005) Increased expression of 70 kD heat shock protein in cultured primary human keratinocytes induced by human papillomavirus 16 E6/E7 gene. Chin Med J (Engl) 118(24):2058–2062

    CAS  Google Scholar 

  55. Lin BY et al (2002) Chaperone proteins abrogate inhibition of the human papillomavirus (HPV) E1 replicative helicase by the HPV E2 protein. Mol Cell Biol 22(18):6592–6604

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Chromy LR, Pipas JM, Garcea RL (2003) Chaperone-mediated in vitro assembly of Polyomavirus capsids. Proc Natl Acad Sci U S A 100(18):10477–10482

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Macejak DG, Sarnow P (1992) Association of heat shock protein 70 with enterovirus capsid precursor P1 in infected human cells. J Virol 66(3):1520–1527

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Geller R, Vignuzzi M, Andino R, Frydman J (2007) Evolutionary constraints on chaperone-mediated folding provide an antiviral approach refractory to development of drug resistance. Genes Dev 21:195–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  59. Khandjian EW, Turler H (1983) Simian virus 40 and polyoma virus induce synthesis of heat shock proteins in permissive cells. Mol Cell Biol 3(1):1–8

    CAS  PubMed Central  PubMed  Google Scholar 

  60. Miyata Y, Yahara I (2000) p53-independent association between SV40 large T antigen and the major cytosolic heat shock protein, HSP90. Oncogene 19:1477–1484

    Article  CAS  PubMed  Google Scholar 

  61. Sedger L et al (1996) Vaccinia virus replication is independent of cellular HSP72 expression which is induced during virus infection. Virology 225(2):423–427

    Article  CAS  PubMed  Google Scholar 

  62. Jindal S, Young RA (1992) Vaccinia virus infection induces a stress response that leads to association of Hsp70 with viral proteins. J Virol 66(9):5357–5362

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Hung JJ, Chung CS, Chang W (2002) Molecular chaperone Hsp90 is important for vaccinia virus growth in cells. J Virol 76:1379–1390

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Leone G, Coffey MC, Gilmore R, Duncan R, Maybaum L, Lee PW (1996) C-terminal trimerization, but not N-terminal trimerization, of the reovirus cell attachment protein Is a posttranslational and Hsp70/ATP-dependent process. J Biol Chem 271:8466–8471

    Article  CAS  PubMed  Google Scholar 

  65. Gilmore R, Coffey MC, Lee PW (1998) Active participation of Hsp90 in the biogenesis of the trimeric reovirus cell attachment protein sigma1. J Biol Chem 273:15227–15233

    Article  CAS  PubMed  Google Scholar 

  66. Dutta D, Chattopadhyay S, Bagchi P, Halder UC, Nandi S, Mukherjee A, Kobayashi N, Taniguchi K, Chawla-Sarkar M (2011) Active participation of cellular chaperone Hsp90 in regulating the function of rotavirus nonstructural protein 3 (NSP3). J Biol Chem 286:20065–20077

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  67. Guerrero CA, Bouyssounade D, Zarate S, Isa P, Lopez T, Espinosa R, Romero P, Mendez E, Lopez S, Arias CF (2002) Heat shock cognate protein 70 is involved in rotavirus cell entry. J Virol 76:4096–4102

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Wainberg Z et al (1997) Modulation of stress protein (hsp27 and hsp70) expression in CD4+ lymphocytic cells following acute infection with human immunodeficiency virus type-1. Virology 233(2):364–373

    Article  CAS  PubMed  Google Scholar 

  69. O'Keeffe B, Fong Y, Chen D, Zhou S, Zhou Q (2000) Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription. J Biol Chem 275:279–287

    Article  PubMed  Google Scholar 

  70. Anderson I et al (2014) Heat shock protein 90 controls HIV-1 reactivation from latency. Proc Natl Acad Sci U S A 111(15):E1528–E1537

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. de Silva A, Braakman I, Helenius A (1993) Posttranslational folding of vesicular stomatitis virus G protein in the ER: involvement of noncovalent and covalent complexes. J Cell Biol 120(3):647–655

    Article  PubMed  Google Scholar 

  72. Connor JH, McKenzie MO, Parks GD, Lyles DS (2007) Antiviral activity and RNA polymerase degradation following Hsp90 inhibition in a range of negative strand viruses. Virology 362:109–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  73. Zhang X et al (2002) Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol 76(17):8737–8746

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Paingankar MS, Arankalle VA (2014) Identification of chikungunya virus interacting proteins in mammalian cells. J Biosci 39(3):389–399

    Article  CAS  PubMed  Google Scholar 

  75. Rathore AP, Haystead T, Das PK, Merits A, Ng ML, Vasudevan SG (2014) Chikungunya virus nsP3 & nsP4 interacts with HSP-90 to promote virus replication: HSP-90 inhibitors reduce CHIKV infection and inflammation in vivo. Antiviral Res 103:7–16

    Article  CAS  PubMed  Google Scholar 

  76. Supko JG, Hickman RL, Grever MR, Malspeis L (1995) Preclinical pharmacologic evaluation of geldanamycin as an antitumor agent. Cancer Chemother Pharmacol 36:305–315

    Article  CAS  PubMed  Google Scholar 

  77. Chase G, Deng T, Fodor E, Leung BW, Mayer D, Schwemmle M, Brownlee G (2008) Hsp90 inhibitors reduce influenza virus replication in cell culture. Virology 377:431–439

    Article  CAS  PubMed  Google Scholar 

  78. Geller R, Taguwa S, Frydman J (2012) Broad action of Hsp90 as a host chaperone required for viral replication. Biochim Biophys Acta 1823:698–706

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Basha W, Kitagawa R, Uhara M, Imazu H, Uechi K, Tanaka J (2005) Geldanamycin, a potent and specific inhibitor of Hsp90, inhibits gene expression and replication of human cytomegalovirus. Antivir Chem Chemother 16:135–146

    Article  CAS  PubMed  Google Scholar 

  80. Powers MV, Jones K, Barillari C, Westwood I, van Montfort RL, Workman P (2010) Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone? Cell Cycle 9:1542–1550

    Article  CAS  PubMed  Google Scholar 

  81. Braunstein MJ, Scott SS, Scott CM, Behrman S, Walter P, Wipf P, Coplan JD, Chrico W, Joseph D, Brodsky JL, Batuman O (2011) Antimyeloma effects of the heat shock protein 70 molecular chaperone inhibitor MAL3-101. J Oncol 2011:232037

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  82. Fewell SW, Day BW, Brodsky JL (2001) Identification of an inhibitor of hsc70-mediated protein translocation and ATP hydrolysis. J Biol Chem 276:910–914

    Article  CAS  PubMed  Google Scholar 

  83. Fewell SW, Smith CM, Lyon MA, Dumitrescu TP, Wipf P, Day BW, Brodsky JL (2004) Small molecule modulators of endogenous and co-chaperone-stimulated Hsp70 ATPase activity. J Biol Chem 279:51131–51140

    Article  CAS  PubMed  Google Scholar 

  84. Koya K, Li Y, Wang H, Ukai T, Tatsuta N, Kawakami M, Shishido, Chen LB (1996) MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res 56:538–543

    CAS  PubMed  Google Scholar 

  85. Wadhwa R, Sugihara T, Yoshida A, Nomura H, Reddel RR, Simpson R, Maruta H, Kaul SC (2000) Selective toxicity of MKT-077 to cancer cells is mediated by its binding to the hsp70 family protein mot-2 and reactivation of p53 function. Cancer Res 60:6818–6821

    CAS  PubMed  Google Scholar 

  86. Britten CD, Rowinsky EK, Baker SD, Weiss GR, Smith L, Stephenson J, Rothenberg M, Smetzer L, Cramer J, Collins W, Von Hoff DD, Eckhardt SG (2000) A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077. Clin Cancer Res 6:42–49

    CAS  PubMed  Google Scholar 

  87. Propper DJ, Braybrooke JP, Taylor DJ, Lodi R, Styles P, Cramer JA, Collins WC, Levitt NC, Talbot DC, Ganesan TS, Harris AL (1999) Phase I trial of the selective mitochondrial toxin MKT077 in chemo-resistant solid tumours. Ann Oncol 10:923–927

    Article  CAS  PubMed  Google Scholar 

  88. Leu JI, Pimkina J, Frank A, Murphy ME, George DL (2009) A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 36:15–27

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Massey AJ, Williamson DS, Browne H, Murray JB, Dokurno P, Shaw T, Macias AT, Daniels Z, Geoffroy S, Dopson M, Lavan P, Matassova N, Francis GL, Graham CJ, Parsons R, Wang Y, Padfield A, Comer M, Drysdale MJ, Wood M (2010) A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol 66:535–545

    Article  CAS  PubMed  Google Scholar 

  90. Williamson DS, Borgognoni J, Clay A, Daniels Z, Dokurno P, Drysdale MJ, Foloppe N, Francis GL, Graham CJ, Howes R, Macias AT, Murray JB, Parsons R, Shaw T, Surgenor AE, Terry L, Wang Y, Wood M, Massey AJ (2009) Novel adenosine-derived inhibitors of 70 kDa heat shock protein, discovered through structure-based design. J Med Chem 52:1510–1513

    Article  CAS  PubMed  Google Scholar 

  91. Mayer MP (2005) Recruitment of Hsp70 chaperones: a crucial part of viral survival strategies. Rev Physiol Biochem Pharmacol 153:1–46

    Article  CAS  PubMed  Google Scholar 

  92. Earl PL, Moss B, Doms RW (1991) Folding, interaction with GRP78-BiP, assembly, and transport of the human immunodeficiency virus type 1 envelope protein. J Virol 65:2047–2055

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Triantafilou K, Fradelizi D, Wilson K, Triantafilou M (2002) GRP78, a coreceptor for coxsackievirus A9, interacts with major histocompatibility complex class I molecules which mediate virus internalization. J Virol 76:633–643

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  94. Niewiarowska J, D'Halluin JC, Belin MT (1992) Adenovirus capsid proteins interact with HSP70 proteins after penetration in human or rodent cells. Exp Cell Res 201:408–416

    Article  CAS  PubMed  Google Scholar 

  95. Saphire AC, Guan T, Schirmer EC, Nemerow GR, Gerace L (2000) Nuclear import of adenovirus DNA in vitro involves the nuclear protein import pathway and hsc70. J Biol Chem 275:4298–4304

    Article  CAS  PubMed  Google Scholar 

  96. Liu JS, Kuo SR, Makhov AM, Cyr DM, Griffith JD, Broker TR, Chow LT (1998) Human Hsp70 and Hsp40 chaperone proteins facilitate human papillomavirus-11 E1 protein binding to the origin and stimulate cell-free DNA replication. J Biol Chem 273:30704–30712

    Article  CAS  PubMed  Google Scholar 

  97. Cripe TP, Delos SE, Estes PA, Garcea RL (1995) In vivo and in vitro association of hsc70 with polyomavirus capsid proteins. J Virol 69:7807–7813

    CAS  PubMed Central  PubMed  Google Scholar 

  98. Lambert C, Prange R (2003) Chaperone action in the posttranslational topological reorientation of the hepatitis B virus large envelope protein: implications for translocational regulation. Proc Natl Acad Sci U S A 100:5199–5204

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  99. Ciocca DR, Arrigo AP, Calderwood SK (2013) Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 87:19–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Benedict CA, Norris PS, Ware CF (2002) To kill or be killed: viral evasion of apoptosis. Nat Immunol 3:1013–1018

    Article  CAS  PubMed  Google Scholar 

  101. Zylicz M, King FW, Wawrzynow A (2001) Hsp70 interactions with the p53 tumour suppressor protein. EMBO J 20:4634–4638

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Moratilla M, Agromayor M, Nunez A, Funes JM, Varas AJ, Lopez-Estebaranz JL, Esteban M, Martin-Gallardo A (1997) A random DNA sequencing, computer-based approach for the generation of a gene map of molluscum contagiosum virus. Virus Genes 14:73–80

    Article  CAS  PubMed  Google Scholar 

  103. DeCaprio JA (1999) The role of the J domain of SV40 large T in cellular transformation. Biologicals 27:23–28

    Article  CAS  PubMed  Google Scholar 

  104. Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res 18:64–76

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  105. Broder S (2010) The development of antiretroviral therapy and its impact on the HIV-1/AIDS pandemic. Antiviral Res 85:1–18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Chow WA, Jiang C, Guan M (2009) Anti-HIV drugs for cancer therapeutics: back to the future? Lancet Oncol 10:61–71

    Article  CAS  PubMed  Google Scholar 

  107. Domingo E, Holland JJ (1997) RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178

    Article  CAS  PubMed  Google Scholar 

  108. Pillay D, Zambon M (1998) Antiviral drug resistance. BMJ 317:660–662

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Pennings PS (2013) HIV drug resistance: problems and perspectives. Infect Dis Rep 5:e5

    Article  PubMed Central  PubMed  Google Scholar 

  110. Lou Z, Sun Y, Rao Z (2014) Current progress in antiviral strategies. Trends Pharmacol Sci 35:86–102

    CAS  PubMed  Google Scholar 

  111. Tayyari F, Hegele RG (2012) Identifying targets in the hunt for effective respiratory syncytial virus interventions. Expert Rev Respir Med 6:215–222

    Article  CAS  PubMed  Google Scholar 

  112. Zeisel MB, Lupberger J, Fofana I, Baumert TF (2013) Host-targeting agents for prevention and treatment of chronic hepatitis C – perspectives and challenges. J Hepatol 58:375–384

    Article  PubMed  Google Scholar 

  113. Richman DD (2006) Antiviral drug resistance. Antiviral Res 71:117–121

    Article  CAS  PubMed  Google Scholar 

  114. Trepel J, Mollapour M, Giaccone G, Neckers L (2010) Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 10:537–549

    Article  CAS  PubMed  Google Scholar 

  115. Powers MV, Clarke PA, Workman P (2008) Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell 14:250–262

    Article  CAS  PubMed  Google Scholar 

  116. Padwad YS, Mishra KP, Jain M, Chanda S, Ganju L (2010) Dengue virus infection activates cellular chaperone Hsp70 in THP-1 cells: downregulation of Hsp70 by siRNA revealed decreased viral replication. Viral Immunol 23:557–565

    Google Scholar 

  117. Hui C-Y, Xie X-B, Cao H, Huang S-H (2013) The development of novel HCV NS3-4A protease inhibitors anti-infective agents. Anti-Infect Agents 11:125–135

    Google Scholar 

Download references

Acknowledgements

This work was funded by grants R01-AI089526-04 and a Department of Defense Transformative Vision Award to T.A.J.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy A. J. Haystead .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Howe, M.K., Haystead, T.A.J. (2015). New Indications for HSP90 and HSP70 Inhibitors as Antiviral Drugs. In: Asea, A., Almasoud, N., Krishnan, S., Kaur, P. (eds) Heat Shock Protein-Based Therapies. Heat Shock Proteins, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-17211-8_10

Download citation

Publish with us

Policies and ethics