Skip to main content

Renewable Resource Reliability and Availability

  • Chapter
Electric Power Engineering Research and Education

Part of the book series: Power Electronics and Power Systems ((PEPS))

  • 1077 Accesses

Abstract

Wind generators are complex systems based on the latest aerodynamic, mechanical, and electrical designs incorporating coordinated sophisticated control systems. Wind generators have been erected in increasing numbers in the USA, the European Union, China, and other locations, especially smaller islands with no interconnections. European companies and US companies have lead developing technology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen RN, Billinton R, Breipohl AM, Grigg CH (1999) Bibliography on the application of probability methods in power system reliability evaluation – 1992–1996. IEEE Trans Power Syst 14(1):51–57

    Article  Google Scholar 

  2. Allen RN, Billinton R, Breipohl AM, Grigg CH (1994) Bibliography on the application of probability methods in power-system reliability evaluation – 1967–1991. IEEE Trans Power Syst 9(1):41–48

    Article  Google Scholar 

  3. Billinton R, Fotuhi-Firuzabad M, Bertling L (2001) Bibliography on the application of probability methods in power system reliability evaluation 1996–1999. IEEE Trans Power Syst 16(4):595–602

    Article  Google Scholar 

  4. Bloom JA (1992) Representing the production cost curve of a power system using the method of moments. IEEE Trans Power Syst 7:1370–1377

    Article  Google Scholar 

  5. Carvalho L (2013) Advances on the sequential Monte Carlo reliability assessment of generation-transmission systems using cross-entropy and population-based methods. Thesis for Doctor of Philosophy, Universidade do Porto, Faculdade de Engenharia, Supervisor: Professor Vladimiro Henrique Barrosa Pinto de Miranda, Ph.D.; Co-supervisor: Mauro Augusto da Rosa, Ph.D.; Porto, Portugal

    Google Scholar 

  6. Giorsetto P, Utsurogi KF (1983) Development of a new procedure for reliability modeling of wind turbine generators. IEEE Trans Power Appar Syst 102(1):134–143

    Article  Google Scholar 

  7. Liang R-H, Liao J-H (2007) A fuzzy-optimization approach for generation scheduling with wind and solar energy systems. IEEE Trans Power Syst 22(4):1665–1674

    Article  Google Scholar 

  8. Marwali MKC, Ma H, Shahidehpour SM, Abdul-Rahman KH (1998) Short-term generation scheduling in photovoltaic-utility grid with battery storage. IEEE Trans Power Syst 13(3):1057–1062

    Article  Google Scholar 

  9. Pereira V, Gorenstin BG, Fo M (1992) Chronological probabilistic production costing and wheeling calculations with transmission network modeling. IEEE Trans Power Syst 7(2):885–891

    Article  Google Scholar 

  10. Tome Saraiva J, Miranda V, Pinto LMVG (1996) Generation/transmission power system reliability evaluation by Monte-Carlo simulation assuming a fuzzy load description. IEEE Trans Power Syst 11(2):690–695

    Article  Google Scholar 

  11. Schilling MT, Billington R, Leite da Silva AM, El-Kady MA (1989) Bibliography on composite system reliability. IEEE Trans Power Syst 4(3):1122–1132

    Article  Google Scholar 

  12. Whitt W (1992) Asymptotic formulas for Markov processes with applications to simulation. Oper Res 40:279–291

    Article  MathSciNet  MATH  Google Scholar 

  13. Wu FF, Tsai YK (1983) Probabilistic dynamic security assessment of power systems: part 1 – basic model. IEEE Trans CAS 148–149

    Google Scholar 

  14. Saintcross J, Piwko R, Bai X, Clark K, Jordan G, Miller N, Zimberlin J (2005) The effects of integrating wind power on transmission system planning, reliability, and operations, report on phase 2: system performance evaluation. GE Energy Consulting, prepared for The New York State Energy Research And Development Authority

    Google Scholar 

  15. Day JT (1971) Forecasting minimum production costs with linear programming. IEEE Trans Power Appar Syst 90(2):814–823

    Article  Google Scholar 

  16. Wood A, Wollenberg B, Sheblé G (2014) Power generation operation and control, 3rd edn. Wiley, New York, NY

    Google Scholar 

  17. Billinton R (1970) Power system reliability evaluation. Gordon and Breach, New York, pp 97–102

    MATH  Google Scholar 

  18. Endrenyi J (1978) Reliability modeling in electric power systems. Wiley, New York

    Google Scholar 

  19. Ross SM (1993) Introduction to probability models, 5th edn. Academic, New York

    MATH  Google Scholar 

  20. Singh C, Lago-Gonzalez A (1985) Reliability modeling of generation systems including unconventional energy sources. IEEE Trans Power Appar Syst 104(5):1048–1056

    Google Scholar 

  21. Wang X, McDonald JR (1994) Modern power system planning. McGraw-Hill, London

    Google Scholar 

  22. Wang H, Dai T, Thomas RJ (1984) Reliability modeling of large wind farms and associated electric utility interface systems. IEEE Trans Power Appar Syst 103(3)

    Google Scholar 

  23. Wood A, Wollenberg B (1996) Power generation operation and control, 2nd edn. Wiley, New York, NY

    Google Scholar 

  24. Garver LL (1972) Adjusting maintenance schedules to levelize risk. IEEE Trans Power Appar Syst 91:2057–2063

    Article  Google Scholar 

  25. Baleriaux H, Jamoulle E, Linard De Guertechin F (1967) Simulation de l’exploitation d’un parc de machines thermiques de production d’electricite couple a des stations de Pompage. Revue E (Edition SRBE) 5:225–245

    Google Scholar 

  26. Billinton R, Ringlee RJ, Wood AJ (1975) Power system reliability calculations. Oper Res 23(1):182–184

    Google Scholar 

  27. Delson JK, Feng X, Smith WC (1991) A validation process for probabilistic production costing programs. IEEE Trans Power Syst 6(3):1326–1336

    Article  Google Scholar 

  28. Parker C, Stremel J (1996) A smart Monte Carlo procedure for production costing and uncertainty analysis. Proc Am Power Conf 58(II):897–900

    Google Scholar 

  29. Ryan SM, Mazumdar M (1990) “Effect of frequency and duration of generating unit outages on distribution of system production costs. IEEE Trans Power Syst 5:191–197

    Article  Google Scholar 

  30. Ru RS, Toy P, Schenk KF (1980) Expected energy production cost by methods of moments. IEEE Trans Power Appar Syst 1917–1980

    Google Scholar 

  31. Wang L (1989) Approximate confidence bounds on Monte Carlo simulation results for energy production. IEEE Trans Power Syst 4(1):69–74

    Article  Google Scholar 

  32. Breipohl AM, Lee FN, Zhai D, Adapa R (1992) A Gauss-Markov load model for application in risk evaluation and production simulation. IEEE Trans Power Syst 7:1493–1499

    Article  Google Scholar 

  33. Lin M, Breipohl A, Lee F (1989) Comparison of probabilistic production cost simulation methods. IEEE Trans Power Syst 4(4):1326–1333

    Article  Google Scholar 

  34. Mazumdar M, Yin CK (1989) Variance of power generating system production costs. IEEE Trans Power Syst 4:662–667

    Article  Google Scholar 

  35. Ryan SM, Mazumdar M (1992) Chronological influences on the variance of electric power production costs. Oper Res (Suppl 2):S284–S292

    Google Scholar 

  36. Sager MA, Ringlee RJ, Wood AJ (1972) A new generation production cost program to recognize forced outages. IEEE Trans Power Appar Syst 91:2114–2124

    Article  Google Scholar 

  37. Valenzuela J, Mazumdar M (2000) Statistical analysis of electric power production costs. IIE Trans 32:1139–1148

    Google Scholar 

  38. Grigg C, Wong P, Albrecht P, Allan R, Bhavaraju M, Billinton R, Chen Q, Fong C, Haddad S, Kuruganty S, Li W, Mukerji R, Patton D, Rau N, Reppen D, Schneider A, Shahidehpour M, Singh C, The IEEE Reliability Test System-1996 (1999) A report prepared by the reliability test system task force of the application of probability methods subcommittee. IEEE Trans Power Syst 14(3):1010–1020

    Article  Google Scholar 

  39. Park J, Liang W, Choi J, El-Keib AA, Shahidehpour M, Billinton R (2009) Probabilistic reliability evaluation of power system including solar/photovoltaic cell generator. IEEE PES GM2009, Calgary, AB, Canada

    Google Scholar 

  40. Carvalho L, Gonzalez-Fernandez RA, Leite da Silva AM, da Rosa MA, Miranda V (2013) Simplified cross-entropy based approach for generating capacity reliability assessment. IEEE Trans Power Syst 28(2):1609–1616

    Article  Google Scholar 

  41. Sheble GB (1999) Computational auction mechanisms for restructured power industry operation. Springer, New York, NY

    Book  Google Scholar 

  42. Sheble GB (1999) Decision analysis tools for GENCO dispatchers. IEEE Trans Power Syst 14(2):745–750

    Article  Google Scholar 

  43. Billinton R, Gan L (2000) Wind power modeling and application in generating adequacy assessment. Proceedings, the 14th power systems computation conference, Sevilla, Spain

    Google Scholar 

  44. Billinton R, Chowdhury AA (1992) Incorporation of wind energy conversion systems in conventional generating capacity adequacy assessment. IEE Proceedings-C 139(1):47–55

    Article  Google Scholar 

  45. Billinton R, Chen H, Ghajar R (1996) A sequential simulation technique for adequacy evaluation of generating systems including wind energy. In: IEEE/PES 1996 Winter Meeting, vol 96, Baltimore, MD, WM 044-8 EC

    Google Scholar 

  46. Carvalho L, Issicaba D, da Rosa MA, Ramos JPV, Miranda V, Leite da Silva AM (2012) Probabilistic analysis for maximizing the grid integration of wind power generation. IEEE Trans Power Syst 27(4):2323–2331

    Article  Google Scholar 

  47. Gavanidou ES, Bakirtzis AG, Dokopoulos PS (1992) A probabilistic method for the evaluation of the performance and the reliability of wind diesel energy systems. IEEE Paper no. 92 SM 526-6 EC

    Google Scholar 

  48. Lee FN, Lin M, Breipohl AM (1990) “Evaluation of the variance of production cost using a stochastic outage capacity model. IEEE Trans Power Syst 5:1061–1067

    Article  Google Scholar 

  49. Michaelides JM, Votsis PP (1991) Energy analysis and solar energy development in Cyprus. Comput Contr Eng J 2(5):211–215

    Article  Google Scholar 

  50. Sullivan RL (1977) Power system planning. McGraw-Hill, New York

    Google Scholar 

  51. Zaininger HW (Power Technologies, Inc) (1977) Synthetic electric utility systems for evaluating advanced technologies. Electric Power Research Institute

    Google Scholar 

  52. Billinton R, Li W (1991) Hybrid approach for reliability evaluation of composite generation and transmission systems using Monte-Carlo simulation and enumeration technique. IEE Proc C 138(3):233–241

    Google Scholar 

  53. Karki R, Hu P, Billinton R (2006) A simplified wind power generation model for reliability evaluation. IEEE Trans Energ Convers 21(2):533–540

    Article  Google Scholar 

  54. Mazumdar M, Bloom JA (1996) Derivation of the Baleriaux formula of expected production costs based on chronological load considerations. Electr Power Energ Syst 18:33–36

    Article  Google Scholar 

  55. IEEE Reliability Test System (1979) IEEE Trans Power Appar Syst 98:2047–2054

    MATH  Google Scholar 

  56. Raiffa H (1968) Decision analysis. Addison-Wesley, Reading, MA

    MATH  Google Scholar 

  57. Sheble GB (1989) Real-time economic dispatch and reserve allocation using merit order loading and linear programming rules. IEEE Trans Power Syst 4(4):1414–1420

    Article  Google Scholar 

  58. Billinton R, Gan L (1993) Monte Carlo simulation model for multiarea generation system reliability studies. IEE Proc C 140(6):532–538

    Google Scholar 

  59. Billinton R, Li W (1992) A Monte Carlo method for multi-area generation system reliability assessment. IEEE Trans Power Syst 7(4):1487–1492

    Article  Google Scholar 

  60. Billinton R, Lian G (1991) Monte Carlo approach to substation reliability evaluation. IEE Proc C 140(2):147–152

    Google Scholar 

  61. Billinton R, Li W (1994) Reliability assessment of electric power systems using Monte Carlo methods. 24–30

    Google Scholar 

  62. Carvalho L, Issicaba D, da Rosa MA, Ramos JPV, Miranda V (2012) Reliability evaluation of generation systems via sequential population-based Monte Carlo simulation. IEEE 12th international conference on probabilistic methods applied to power systems (PMAPS), Istanbul, Turkey

    Google Scholar 

  63. Howard RA (1988) Decision analysis: practice and promise. Manag Sci 34:675–679

    Article  Google Scholar 

  64. U.S. Department of Energy (2005) Wind power today. Federal Wind Program Highlights, Energy Efficiency and, Renewable Energy

    Google Scholar 

  65. Ensslin C, Milligan M, Holttinen H, O’Malley M, Keane A. Current methods to calculate capacity credit of wind power, IEA Collaboration. IEEE GM2008, Pittsburg, PA, USA

    Google Scholar 

  66. Garver LL (1966) Effective load carrying capability of generating units. IEEE Trans Power Appar Syst 85:910–919

    Article  Google Scholar 

  67. Booth RR (1972) Power system simulation model based on probability analysis. IEEE Trans Power Appar Syst 91:62–69

    Article  Google Scholar 

  68. D’Annunzio C, Santoso S. Analysis of a wind farm’s capacity value using a non-iterative method. IEEE GM2008, Pittsburg, PA, USA

    Google Scholar 

  69. Huang SR, Chen SL (1993) Evaluation and improvement of variance reduction in Monte-Carlo production simulation. IEEE Trans Energy Conversion 8(4):610–619

    Article  Google Scholar 

  70. Lim J, Jang J, Choi J, Cho K, Cha J (2012) Probabilistic production cost simulation and reliability evaluation of power system including renewable generators. iitmicrogrid.net

    Google Scholar 

  71. Miranda V, Carvalho LM, Rosa MA, Da Silva AML, Singh C (2009) Improving power system reliability calculation efficiency with EPSO variants. IEEE Trans Power Syst 24(4):1772–1779

    Article  Google Scholar 

  72. Tatsuta F, Tsuji T, Emi N, Nishikata S (2006) Studies on wind turbine generator system using a shaft generator system. J Electr Eng Technol 1(2):177–184

    Article  Google Scholar 

  73. White JA, Agee MH, Case KE (1989) Principles of engineering economic analysis. Wiley, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gerald B. Sheblé .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sheblé, G.B. (2015). Renewable Resource Reliability and Availability. In: Kyriakides, E., Suryanarayanan, S., Vittal, V. (eds) Electric Power Engineering Research and Education. Power Electronics and Power Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-17190-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17190-6_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17189-0

  • Online ISBN: 978-3-319-17190-6

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics