Skip to main content

Congenital Disorders of Intestinal Electrolyte Transport

  • Chapter
  • First Online:
Textbook of Pediatric Gastroenterology, Hepatology and Nutrition

Abstract

Congenital diarrheal disorders (CDD) represent a group of rare chronic enteropathies characterized by a heterogeneous etiology, with a typical onset early in the life. In the context of CDD, a subset consists in congenital disorders of intestinal electrolytes transport, a class of inherited disorders related to a defect in intestinal transepithelial ion transport. Most of these disorders display similar clinical presentation. For many of these conditions, severe chronic diarrhea represents the main clinical manifestation, while in others diarrhea is only a component of a more complex multiorgan or systemic disease. Frequently, diarrhea leads to severe dehydration and metabolic acidosis. In the vast majority of cases, appropriate therapy must be started immediately to prevent dehydration and long-term, and sometimes life-threatening, complications. The diagnosis of these disorders is rather complex, but in most cases, the disease gene is known. Thus, molecular analysis has become a major advantage in the difficult diagnostic approach to a patient with suspected congenital disorders of intestinal electrolytes transport. This group of disorders includes congenital chloride diarrhea, congenital sodium diarrhea, familial diarrhea syndrome, and cystic fibrosis that are the main subjects of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berni Canani R, Cirillo P, Terrin G. Chronic and intractable diarrhea. In: Guandalini S, editor. Essential pediatric gastroenterology hepatology, and nutrition. Chicago: McGraw-Hill Mediacla Publishing Division; 2005. pp. 25–47.

    Google Scholar 

  2. Field M. Intestinal ion transport and the pathophysiology of diarrhea. J Clin Invest. 2003;111:931–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Alrefai WA, Tyagi S, Nazir TM, Barakat J, Anwar SS, Hadjiagapiou C, et al. Human intestinal anion exchanger isoforms: expression, distribution, and membrane localization. Biochim Biophys Acta. 2001;1511:17–27.

    Article  CAS  PubMed  Google Scholar 

  4. Ruemmele FM. Chronic enteropathy: molecular basis. Gastrointestinal disorders. Nestlè Nutr Workshop Ser Pediatr Program. 2007;59:73–88.

    PubMed  Google Scholar 

  5. Berni Canani R, Terrin G. Recent progress in congenital diarrheal disorders. Curr Gastroenterol Rep. 2011;13:257–64.

    Article  Google Scholar 

  6. Makela S, Kere J, Holmberg C, Höglund P. SLC26A3 mutations in congenital chloride diarrhea. Hum Mutat. 2002;20:425–38.

    Article  CAS  PubMed  Google Scholar 

  7. Dorwart MR, Shcheynikov N, Yang D, Muallem S. The solute carrier 26 family of proteins in epithelial ion transport. Physiology (Bethesda). 2008;23:104–14.

    Article  CAS  Google Scholar 

  8. Ko SB, Zeng W, Dorwart MR, Luo X, Kim KH, Millen L, et al. Gating of CFTR by the STAS domain of SLC26 transporters. Nat Cell Biol. 2004;6:343–50.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Dorwart MR, Shcheynikov N, Baker JM, Forman-Kay JD, Muallem S, Thomas PJ. Congenital chloride losing diarrhea causing mutations in the STAS domain result in misfolding and mistrafficking of SLC26A3. J Biol Chem. 2008;283:8711–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Hayashi H, Yamashita Y. Role of N-glycosylation in cell surface expression and protection against proteolysis of the intestinal anion exchanger SLC26A3. Am J Physiol Cell Physiol. 2012;302:C781–95.

    Article  CAS  PubMed  Google Scholar 

  11. Hihnala S, Kujala M, Toppari J, Kere J, Holmberg C, Höglund P. Expression of SLC26A3, CFTR and NHE3 in the human male reproductive tract: role in male subfertility caused by congenital chloride diarrhea. Mol Hum Reprod. 2006;12:107–11.

    Article  CAS  PubMed  Google Scholar 

  12. Wedenoja S, Ormala T, Berg UB, Halling SF, Jalanko H, Karikoski R, et al. The impact of sodium chloride and volume depletion in the chronic kidney disease of congenital chloride diarrhea. Kidney Int. 2008;74:1085–93.

    Article  CAS  PubMed  Google Scholar 

  13. Jacob P, Rossmann H, Lamprecht G, Kretz A, Neff C, Lin-Wu E, et al. Down-regulated in adenoma mediates apical Cl/HCO3-exchange in rabbit, rat, and human duodenum. Gastroenterology 2002;122:709–24.

    Article  CAS  PubMed  Google Scholar 

  14. Höglund P, Holmberg C, Sherman P, Kere J. Distinct outcomes of chloride diarrhea in two siblings with identical genetic background of the disease: implications for early diagnosis and treatment. Gut 2001;48:724–7.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Berni Canani R, Terrin G, Elce A, Pezzella V, Heinz-Erian P, Pedrolli A, et al. Genotype-dependency of butyrate efficacy in children with congenital chloride diarrhea. Orphanet J Rare Dis. 2013;8:194.

    Article  Google Scholar 

  16. Terrin G, Tomaiuolo R, Passariello A, Elce A, Amato F, Di Costanzo M, et al. Congenital diarrheal disorders: updated diagnostic approach. Int J Mol Sci. 2012;13:4168–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Hihnala S, Höglund P, Lammi L, Kokkonen J, Ormälä T, Holmberg C. Long-term clinical outcome in patients with congenital chloride diarrhea. J Pediatr Gastroenterol Nutr. 2006;42:369–75.

    Article  PubMed  Google Scholar 

  18. Berni Canani R, Terrin G, Cardillo G, Tomaiuolo R, Castaldo G. Congenital diarrheal disorders: improved understanding of gene defects is leading to advances in intestinal physiology and clinical management. J Pediatr Gastroenterol Nutr. 2010;50:360–6.

    PubMed  Google Scholar 

  19. Wedenoja S, Hoglund P, Holmberg C. Review article: the clinical management of congenital chloride diarrhea. Aliment Pharmacol Ther. 2010;31:477–85.

    Article  CAS  PubMed  Google Scholar 

  20. Berni Canani R, Terrin G, Cirillo P, Castaldo G, Salvatore F, Cardillo G, et al. Butyrate as an effective treatment of congenital chloride diarrhea. Gastroenterology 2004;127:630–4.

    Article  Google Scholar 

  21. Wedenoja S, Holmberg C, Höglund P. Oral butyrate in treatment of congenital chloride diarrhea. Am J Gastroenterol. 2008;103:252–4.

    Article  PubMed  Google Scholar 

  22. Müller T, Wijmenga C, Phillips AD, Janecke A, Houwen RH, Fischer H, et al. Congenital sodium diarrhea is an autosomal recessive disorder of sodium/proton exchange but unrelated to known candidate genes. Gastroenterology 2000;119:1506–13.

    Article  PubMed  Google Scholar 

  23. Heinz-Erian P, Müller T, Krabichler B, Schranz M, Becker C, Rüschendorf F, et al. Mutations in SPINT2 cause a syndromic form of congenital sodium diarrhea. Am J Hum Genet. 2009;84:188–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Fiskerstrand T, Arshad N, Haukanes BI, Tronstad RR, Pham KD, Johansson S, et al. Familial diarrhea syndrome caused by an activating GUCY2C mutation. N Engl J Med. 2012. 26;366:1586–95.

    Article  Google Scholar 

  25. Basu N, Arshad N, Visweswariah SS. Receptor guanylyl cyclase C (GC-C): regulation and signal transduction. Mol Cell Biochem. 2010;334:67–80.

    Article  CAS  PubMed  Google Scholar 

  26. Guandalini S, Migliavacca M, de Campora E, Fasano A. Cyclic GMP effects on nutrient and electrolyte transport in rabbit ileum. Gastroenterology 1982;83:15–21.

    CAS  PubMed  Google Scholar 

  27. Li C, Naren AP. CFTR chloride channel in the apical compartments: spatiotemporal coupling to its interacting partners. Integr Biol (Camb). 2010;2:161–77.

    Article  Google Scholar 

  28. O’Sullivan BP, Freedman SD. Cystic fibrosis. Lancet 2009;373:1891–902.

    Article  PubMed  Google Scholar 

  29. Cystic Fibrosis Mutation Database 2011. www.genet.sickkids.on.ca/cftr.

  30. Donaldson SH, Bennett WD, Zeman KL, Knowles MR, Tarran R, Boucher RC. Mucus clearance and lung function in cystic fibrosis with hypertonic saline. N Engl J Med. 2006;354:241–50.

    Article  CAS  PubMed  Google Scholar 

  31. Moyer K, Balistreri W. Hepatobiliary disease in patients with cystic fibrosis. Curr Opin Gastroenterol. 2009;25:272–8.

    Article  PubMed  Google Scholar 

  32. LeGrys VA, Yankaskas JR, Quittell LM, Marshall BC, Mogayzel PJ Jr, Cystic Fibrosis Foundation. Diagnostic sweat testing: the cystic fibrosis foundation guidelines. J Pediatr. 2007;151:85–9.

    Article  PubMed  Google Scholar 

  33. Mishra A, Greaves R, Smith K, Carlin JB, Wootton A, Stirling R. Diagnosis of cystic fibrosis by sweat testing: age-specific reference intervals. J Pediatr. 2008;153:758–63 (eds.2008.04.067).

    Article  PubMed  Google Scholar 

  34. Dequeker E, Stuhrmann M, Morris MA, Casals T, Castellani C, Claustres M, et al. Best practice guidelines for molecular genetic diagnosis of cystic fibrosis and CFTR-related disorders–updated European recommendations. Eur J Hum Genet. 2009;17:51–65. doi:10.1038/ejhg.2008.136.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Ross LF. Newborn screening for cystic fibrosis: a lesson in public health disparities. J Pediatr. 2008;153:308–13.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Ren CL, Pasta DJ, Rasouliyan L, Wagener JS, Konstan MW, Morgan WJ, et al. Relationship between inhaled corticosteroid therapy and rate of lung function decline in children with cystic fibrosis. J Pediatr. 2008;153:746–51.

    Article  CAS  PubMed  Google Scholar 

  37. Flume PA, Robinson KA, O’Sullivan BP, Goss CH, Mogayzel PJ Jr., Willey-Courand DB, et al. Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. Am J Respir Crit Care Med. 2007;176:957–69.

    Article  CAS  PubMed  Google Scholar 

  38. Flume PA, Robinson KA, O’Sullivan BP, Finder JD, Vender RL, Willey-Courand DB, et al. Cystic fibrosis pulmonary guidelines: airway clearance therapies. Respir Care. 2009;54:522–37.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

Grant from Agenzia Italiana del Farmaco, AIFA (MRAR08W002), is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Berni Canani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pezzella, V., Cozzolino, T., Maddalena, Y., Terrin, G., Nocerino, R., Berni Canani, R. (2016). Congenital Disorders of Intestinal Electrolyte Transport. In: Guandalini, S., Dhawan, A., Branski, D. (eds) Textbook of Pediatric Gastroenterology, Hepatology and Nutrition. Springer, Cham. https://doi.org/10.1007/978-3-319-17169-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17169-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17168-5

  • Online ISBN: 978-3-319-17169-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics