Skip to main content

Classification of Constitutive Equations for Dissipative Materials—General Review

  • Chapter
  • First Online:
Mechanics of Anisotropic Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In the present chapter the general features of thermodynamically based constitutive modeling are described. In such approach a basic hypothesis is that the state of a material is entirely determined by certain values of some independent variables, called variables of state. This type of constitutive modeling is particularly well adapted to the formulation of constitutive equations for deformable solids with several dissipative phenomena. A common three-stage procedure in the definition of a constitutive model is discussed: (1) choice of the state variables, (2) definition of the state potential from which the state relations (between strain-like variables and their dual conjugated forces) are derived, and (3) choice of the dissipation potential from which the rate equations of state variables are derived. The classification of constitutive equations is then presented for elastic-damage, elastic-plastic, thermo-elastic-(visco)plastic, and elastic-plastic-damage materials. Damage-induced anisotropy and unilateral damage effect are accounted. When plasticity is considered, an alternative multiscale approach, based on polycrystalline calculations for the description of yielding anisotropy and its evolution with accumulated deformation, is also discussed. As an example of thermoplastic coupling, the fatigue behavior of martensitic hot work tool steel in nonisothermal conditions is analyzed. In this example two cases are compared: (1) partial coupling, when changing temperature is accounted only in changing material parameters, and (2) full coupling, when additional terms proportional to temperature rate are added in the kinetic equations of thermodynamic conjugate forces. Numerical simulations are performed, which indicate the significant influence of temperature rate on the response of constitutive model when cyclic thermomechanical loading is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboudi, J.: The effect of anisotropic damage evolution on the behavior of ductile and brittle matrix composites. Int. J. Solids Struct. 48(14–15), 2102–2119 (2011)

    Article  Google Scholar 

  2. Abu Al-Rub, R.K., Darabi, M.K.: A thermodynamic framework for constitutive modeling of time-and rate-dependent materials, part I: theory. Int. J. Plast. 34, 61–92 (2012)

    Article  Google Scholar 

  3. Abu Al-Rub, R.K., Voyiadjis, G.Z.: On the coupling of anisotropic damage and plasticity models for ductile materials. Int. J. Solids Struct. 40, 2611–2643 (2003)

    Article  Google Scholar 

  4. Barlat, F., Brem, J.C., Yoon, J.W., Chung, K., Dick, R.E., Lege, D.J., Pourboghrat, F., Choi, S.-H., Chu, E.: Plane stress function for aluminium alloy sheets—part I: theory. Int. J. Plast. 19, 1297–1319 (2003)

    Article  Google Scholar 

  5. Barlat, F., Aretz, H., Yoon, J.W., Karabin, M.E., Brem, J.C., Dick, R.E.: Linear transformation-based anisotropic yield functions. Int. J. Plast. 21, 1009–1039 (2005)

    Article  Google Scholar 

  6. Barlat, F., Gracio, J.J., Lee, M.-G., Rauch, E.F., Vincze, G.: An alternative to kinematic hardening in classical plasticity. Int. J. Plast. 27, 1309–1327 (2011)

    Article  Google Scholar 

  7. Bednarek, Z., Kamocka, R.: The heating rate impact on parameters characteristic of steel behaviour under fire conditions. J. Civ. Eng. Manag. 12(4), 269–275 (2006)

    Google Scholar 

  8. Benallal, A., Bigoni, D.: Effects of temperature and thermo-mechanical couplings on material instabilities and strain localization of inelastic materials. J. Mech. Phys. Solids 52, 725–753 (2004)

    Article  Google Scholar 

  9. Bernhart, G., Moulinier, G., Brucelle, O., Delagnes, D.: High temperature low cycle fatigue behaviour of a martensite forging tool steel. Int. J. Fatigue 21(2), 179–186 (1999)

    Article  Google Scholar 

  10. Blaj, L., Cailletaud, G.: Application of a multimechanism model to the prediction of ratcheting behavior. In: Miannay, D., Costa, P., François, D. (eds.) Advances in Mechanical Behaviour, Plasticity and Damage, SF2M, vol. 2, pp. 1155–1160 (2000)

    Google Scholar 

  11. Boudifa, M., Saanouni, K., Chaboche, J.L.: A micromechanical model for inelastic ductile damage prediction in polycrystalline metals for metal forming. Int. J. Mech. Sci. 51, 453–464 (2009)

    Article  Google Scholar 

  12. Cailletaud, G., Saï, K.: Study of plastic/viscoplastic models with various inelastic mechanisms. Int. J. Plast. 11, 991–1005 (1995)

    Article  Google Scholar 

  13. Casey, J.: On elastic-thermo-plastic materials at finite deformations. Int. J. Plast. 14, 173–191 (1998)

    Article  Google Scholar 

  14. Cazacu, O., Barlat, F.: A criterion for description of anisotropy and yield differential effects in pressure-insensitive materials. Int. J. Plast. 20, 2027–2045 (2004)

    Article  Google Scholar 

  15. Cazacu, O., Plunkett, B., Barlat, F.: Orthotropic yield criterion for hexagonal closed packed metals. Int. J. Plast. 22, 1171–1194 (2006)

    Article  Google Scholar 

  16. Chaboche, J.L.: A review of some plasticity and viscoplasticity constitutive theories. Int. J. Plast. 24, 1642–1693 (2008)

    Article  Google Scholar 

  17. Chaboche, J.L., Kruch, S., Maire, J.F., Pottier, T.: Towards a micromechanics based inelastic and damage modeling of composites. Int. J. Plast. 17, 411–439 (2001)

    Article  Google Scholar 

  18. Chaboche, J.L.: Thermodynamic formulation of constitutive equations and application to the viscoplasticity and viscoelasticity of metals and polymers. Int. J. Solids Struct. 34(18), 2239–2254 (1997)

    Article  Google Scholar 

  19. Chaboche, J.L.: Viscoplastic constitutive equations for the description of cyclic and anisotropic behaviour of metals. Bulletin de L’Academie Polonaise des Sciences. Série des Sciences Techniques XXV(1), 33–39 (1997)

    Google Scholar 

  20. Chaboche, J.L.: Time independent constitutive theories for cyclic plasticity. Int. J. Plast. 2(2), 149–188 (1986)

    Article  Google Scholar 

  21. Chaboche, J.L., Rousselier, G.: On the plastic and viscoplastic constitutive equations, parts I and II. J. Press. Vessel Technol., ASME 105, 153–164 (1983)

    Article  Google Scholar 

  22. Challamel, N., Lanos, C., Casandjian, C.: Strain-based anisotropic damage modeling and unilateral effects. Int. J. Mech. Sci. 47, 459–473 (2005)

    Article  Google Scholar 

  23. Chen, X.F., Chow, C.L.: On damage strain energy release rate Y. Int. J. Damage Mech. 4, 236–251 (1995)

    Article  Google Scholar 

  24. Chow, C.L., Lu, T.J.: An analytical and experimental study of mixed-mode ductile fracture under nonproportional loading. Int. J. Damage Mech. 1, 191–236 (1992)

    Article  Google Scholar 

  25. Egner, H.: Non-isothermal coupled thermo-damage-plasticity. In: Hetnarski, R. (ed.) Encyclopedia of Thermal Stresses, pp. 3356–3368. Springer, Berlin (2014)

    Chapter  Google Scholar 

  26. Egner, H.: On the full coupling between thermo-plasticity and thermo-damage in thermodynamic modeling of dissipative materials. Int. J. Solids Struct. 49, 279–288 (2012)

    Article  Google Scholar 

  27. Egner, H., Egner, W.: Modeling of a tempered martensitic hot work tool steel behavior in the presence of thermo-viscoplastic coupling. Int. J. Plast. 57, 77–91 (2014)

    Article  Google Scholar 

  28. Egner, H., Egner, W.: Modeling of coupled dissipative phenomena in engineering materials. In: Altenbach, H., Kruch, S. (eds.) Advanced Materials Modeling for Structures. Series Advanced Structured Materials, vol. 19, pp. 141–151. Springer, Berlin (2013)

    Chapter  Google Scholar 

  29. Ganczarski, A.: Thermal anisotropy inducing brittle damage. Tech. Mech. 19, 321–330 (1999)

    Google Scholar 

  30. Ganczarski, A.W., Egner, H., Muc, A., Skrzypek, J.J.: Constitutive models for analysis and design of multifunctional technological materials. In: Rustichelli, F., Skrzypek, J.J. (eds.) Innovative Technological Materials. Structural Properties by Neutrons, Synchrotron Radiation and Modelling, pp. 179–220. Springer, New York (2010)

    Google Scholar 

  31. Ganczarski, A., Skrzypek, J.J.: A study on coupled thermo-elasto-plastic-damage dissipative phenomena: models and application to some innovative materials. J. Therm. Stress. 32, 698–751 (2009)

    Article  Google Scholar 

  32. Ganczarski, A., Skrzypek, J.: Mechanics of Novel Materials (in Polish). Wydawnictwo Politechniki Krakowskiej, Kraków (2013)

    Google Scholar 

  33. Gibbons, C.L., Dunn, J.E.: Investigations of reduced service life of hot work (Cr-Mo) die steel pieces. Ind. Heat. 47, 6–9 (1980)

    Google Scholar 

  34. Golański, G., Mroziński, S.: Low cycle fatigue and cyclic softening behavior of martensitic cast steel. Eng. Fail. Anal. 35, 692–702 (2013)

    Article  Google Scholar 

  35. Golański, G., Mroziński, S.: Fatigue life at \(550\,^{\circ }\)C temperature of aged martensitic cast steel. AASRI Procedia 2, 249–255 (2013)

    Google Scholar 

  36. Halphen, B., Nguyen, Q.S.: Sur les matériaux standards généralisés. Journal de Méchanique 14, 39–63 (1975)

    Google Scholar 

  37. Hartmann, G.: Comparison of the uniaxial behavior of the inelastic constitutive models of Miller and Walker by numerical experiments. Int. J. Plast. 6, 189–206 (1990)

    Article  Google Scholar 

  38. Hershey, A.V.: The plasticity of an isotropic aggregate of anisotropic face centered cubic crystals. J. Appl. Mech. 21, 241–249 (1954)

    Google Scholar 

  39. Houlsby, G.T., Puzrin, A.M.: A thermomechanical framework for constitutive models for rate-independent dissipative materials. Int. J. Plast. 16, 1017–1047 (2000)

    Article  Google Scholar 

  40. Jiang, Y., Zhang, J.: Benchmark experiments and characteristic cyclic plasticity deformation. Int. J. Plast. 24, 1481–1515 (2008)

    Article  Google Scholar 

  41. Khan, A.S., Liu, H.: Strain rate and temperature dependent fracture criteria for isotropic and anisotropic metals. Int. J. Plast. 37, 1–15 (2012)

    Article  Google Scholar 

  42. Khan, A.S., Yu, S., Liu, H.: Deformation enhanced anisotropic responses of Ti-6Al-4V alloy, part II: a stress rate and temperature dependent anisotropic yield criterion. Int. J. Plast. 38, 14–26 (2012)

    Article  Google Scholar 

  43. Kowalsky, U., Ahrens, H., Dinkler, D.: Distorted yield surfaces-modelling by higher order anisotropic hardening tensors. Comput. Mater. Sci. 16, 81–88 (1999)

    Article  Google Scholar 

  44. Krajcinovic, D.: Constitutive theory of damaging materials. ASME J. Appl. Mech. 50, 355–360 (1983)

    Article  Google Scholar 

  45. Kuo, Ch.-M., Lin, Ch.-S.: Static recovery activation energy of pure copper at room temperature. Scripta Materialia 57, 667–670 (2007)

    Google Scholar 

  46. Lebensohn, R.A., Tome, C.N.: A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metall. Mater. 41, 2611–2624 (1993)

    Google Scholar 

  47. Lee, K.D., Krempl, E.: An orthotropic theory of viscoplasticity based on overstress for thermomechanical deformation. Int. J. Solids Struct. 27, 1445–1459 (1991)

    Article  Google Scholar 

  48. Lemaitre, J., Chaboche, J.L.: Mechanics of Solid Materials. Cambridge University Press, London (1990)

    Book  Google Scholar 

  49. Litewka, A.: Effective material constants for orthotropically damaged elastic solids. Arch. Mech. Stos. 37(6), 631–642 (1985)

    Google Scholar 

  50. McDowell, D.L.: A nonlinear kinematic hardening theory for cyclic thermoplasticity and thermoviscoplasticity. Int. J. Plast. 8, 695–728 (1992)

    Article  Google Scholar 

  51. Mebarki, N., Delagnes, D., Lamesle, P., Delmas, F., Levaillant, C.: Relationship between microstructure and mechanical properties of a 5%Cr tempered martensitic tool steel. Mater. Sci. Eng. A 387–389(1–2), 171–175 (2004)

    Article  Google Scholar 

  52. Mirzakhani, B., Salehi, M.T., Khoddam, S., Seyedin, S.H., Aboutalebi, M.R.: Investigation of dynamic and static recrystallization behavior during thermomechanical processing in a API-X70 microalloyed steel. J. Mater. Eng. Perform. 18(8), 1029–1034 (2009)

    Article  Google Scholar 

  53. Moreno, V., Jordan, E.H.: Prediction of material thermomechanical response with a unified viscoplastic constitutive model. Int. J. Plast. 2, 223–245 (1986)

    Article  Google Scholar 

  54. Murakami, S., Ohno, N.: A continuum theory of creep and creep damage. In: Ponter, A.R.S., Hayhurst, D.R. (eds.) Creep in Structures, 3rd IUTAM Symposium on Creep in Structures, pp. 422–444. Springer, Berlin (1981)

    Google Scholar 

  55. Nixon, M.E., Cazacu, O., Lebensohn, R.A.: Anisotropic response of high-purity \(\alpha \)-titanium: experimental characterization and constitutive modeling. Int. J. Plast. 26, 516–532 (2010)

    Article  Google Scholar 

  56. Ohno, N.: Recent topics in constitutive modeling for cyclic plasticity and viscoplasticity. Appl. Mech. Rev. 43(11), 283–295 (1990)

    Article  Google Scholar 

  57. Ohno, N., Takahashi, Y., Kubawara, K.: Constitutive modeling of anisothermal cyclic plasticity of 304 stainless steel. J. Eng. Mater. Technol. 111, 106–114 (1989)

    Article  Google Scholar 

  58. Onsager, L.: Reciprocal relations in irreversible thermodynamics I. Phys. Rev. 37, 405–426 (1931)

    Article  Google Scholar 

  59. Onsager, L.: Reciprocal relations in irreversible thermodynamics II. Phys. Rev. 38, 2265–2279 (1931)

    Article  Google Scholar 

  60. Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier, Amsterdam (2005)

    Google Scholar 

  61. Phillips, A., Tang, J.L.: The effect of loading path on the yield surface at elevated temperatures. Int. J. Solids Struct. 8, 463–474 (1972)

    Article  Google Scholar 

  62. Plunkett, B., Lebensohn, R.A., Cazacu, O., Barlat, F.: Anisotropic yield function of hexagonal materials taking into account texture development and anisotropic hardening. Acta Mater. 54, 4159–4169 (2006)

    Article  Google Scholar 

  63. Plunkett, B., Cazacu, O., Lebensohn, R.A., Barlat, F.: Elastic-viscoplastic modeling of textured metals and validation using the Taylor cylinder impact test. Int. J. Plast. 23, 1001–1021 (2007)

    Article  Google Scholar 

  64. Plunkett, B., Cazacu, O.: Viscoplastic modeling of anisotropic textured metals. In: Cazacu, O. (ed.) Multiscale Modeling of Heterogeneous Materials: From Microstructure to Macro-Scale Properties, pp. 111–126. ISTE/Wiley, New York (2008)

    Chapter  Google Scholar 

  65. Plunkett, B., Cazacu, O., Barlat, F.: Orthotropic yield criteria for description of the anisotropy in tension and compression of sheet metal. Int. J. Plast. 24, 847–866 (2008)

    Article  Google Scholar 

  66. Prager, W.: Non-isothermal plastic deformation. In: Proceedings, Konnickl Nederl. Akademie Van Wetenschappen Te Amsterdam, Series B, vol. 61 (1958)

    Google Scholar 

  67. Saanouni, K.: Damage Mechanics in Metal Forming, Advanced Modeling and Numerical Simulation. Wiley, London (2012)

    Book  Google Scholar 

  68. Saï, K.: Multi-mechanism models: present state and future trends. Int. J. Plast. 27, 250–281 (2011)

    Article  Google Scholar 

  69. Skrzypek, J.J., Ganczarski, A.: Modeling of damage effect on heat transfer in time-dependent nonhomogeneous solids. J. Therm. Stress. 21, 205–231 (1998)

    Article  Google Scholar 

  70. Skrzypek, J.J., Ganczarski, A.W., Rustichelli, F., Egner, H.: Advanced Materials and Structures for Extreme Operating Conditions. Springer, Berlin (2008)

    Google Scholar 

  71. Streilein, T.: Erfassung formativer Verfestigung in viskoplastischen Stoffmodellen, pp. 97–83. Institut für Statik der TU Braunschweig (1997)

    Google Scholar 

  72. Swift, H.W.: Plastic instability under plane stress. J. Mech. Phys. Solids 1, 1–18 (1952)

    Article  Google Scholar 

  73. Taleb, L., Cailletaud, G.: An updated version of the multimechanism model for cyclic plasticity. Int. J. Plast. 26, 859–874 (2010)

    Article  Google Scholar 

  74. Velay, V., Bernhart, G., Penazzi, L.: Cyclic behavior modeling of a tempered martensitic hot work tool steel. Int. J. Plast. 22, 459–496 (2006)

    Article  Google Scholar 

  75. Xiao, H., Bruhns, T., Meyers, A.: Thermodynamic laws and consistent Eulerian formulation of finite elastoplasticity with thermal effects. J. Mech. Phys. Solids 55, 338–365 (2007)

    Article  Google Scholar 

  76. Yoon, J.W., Barlat, F., Gracio, J.J., Rauch, E.: Anisotropic strain hardening behavior in simple shear for cube textured aluminum alloy sheets. Int. J. Plast. 21, 2426–2447 (2005)

    Article  Google Scholar 

  77. Yoon, J.W., Barlat, F., Dick, R.E., Karabin, M.E.: Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int. J. Plast. 22, 174–193 (2006)

    Article  Google Scholar 

  78. Yoon, J.W., Lou, Y., Yoon, J., Glazoff, M.V.: Asymmetric yield function based on the stress invariants for pressure sensitive metals. Int. J. Plast. 56, 184–202 (2014)

    Article  Google Scholar 

  79. Yu, D., Chen, X., Yu, W., Chen, G.: Thermo-viscoplastic modeling incorporating dynamic strain aging effect on the uniaxial behavior of Z2CND18.12N stainless steel. Int. J. Plast. 37, 119–139 (2012)

    Article  Google Scholar 

  80. Zhang, Z., Bernhart, G., Delagnes, D.: Cyclic behavior constitutive modeling of a tempered martensitic steel including ageing effect. Int. J. Fatigue 30, 706–716 (2008)

    Article  Google Scholar 

  81. Zhang, Z., Delagnes, D., Bernhart, G.: Ageing effect on cyclic plasticity of a tempered martensitic steel. Int. J. Fatigue 29(2), 336–346 (2007)

    Article  Google Scholar 

  82. Zhang, Z., Qi, Y., Delagnes, D., Bernhart, G.: Microstructure variation and hardness diminution during low cycle fatigue of 55NiCrMoV7 steel. J. Iron Steel Res. 14(6), 68–73 (2007)

    Article  Google Scholar 

  83. Zhang, Z., Delagnes, D., Bernhart, G.: Anisothermal cyclic plasticity modeling of martensitic steels. Int. J. Fatigue 24, 635–648 (2002)

    Article  Google Scholar 

  84. Ziegler, H.: Some extremum principles in irreversible thermodynamics with applications to continuum mechanics. In: Sneddon, I.N., Hill, R. (eds.) Progress is Solid Mechanics, pp. 92–193. North-Holland, Amsterdam (1963)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Egner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Egner, H., Egner, W. (2015). Classification of Constitutive Equations for Dissipative Materials—General Review. In: Skrzypek, J., Ganczarski, A. (eds) Mechanics of Anisotropic Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17160-9_7

Download citation

Publish with us

Policies and ethics