Skip to main content

Mechanics of Anisotropic Composite Materials

  • Chapter
  • First Online:
Mechanics of Anisotropic Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 1815 Accesses

Abstract

Mechanics of composite materials was in the last decade one of the most rapidly explored engineering area, basically due to huge progress in composite fabrication and use. The main problem referred in this chapter is how to correctly predict averaged effective properties by implementation of numerous homogenization techniques. Useful classification of composites with respect to the format of effective stiffness matrix, based on the analogy between the crystal lattice symmetry and respective configuration of reinforcement in the RUC, is given. Extended section is focused on conventionally used Hill’s theorem on upper and lower bounds by Voigt and Reuss’ isotropic estimation for approximate determination of stiffness and compliance matrices of anisotropic composite. Consistent application of the Hill theorem to the elements of elastic stiffness or compliance matrices (but not to engineering anisotropy constants) enable to explain some peculiarities of the Poisson ratio diagrams, met in respective bibliography (e.g., Aboudi et al., Micromechanics of Composite Materials, 2013; Sun and Vaidya, Compos. Sci. Technol. 56:171–179, 1996; Gan et al., Int. J. Solids Struct. 37:5097–5122, 2000). The new effective proposal to achieve approximation of the mechanical modules of unidirectionally reinforced composites by the use of hybrid-type rule of weighted average between the Voigt and Reuss upper and lower estimates is proposed. Capability of this averaged interpolation was checked based on selected findings by Gan et al. (Int. J. Solids Struct. 37:5097–5122, 2000) for Boron/Al composite, which show good convergence and enable to treat weighting coefficients as universal ones over the full \(V_\mathrm{f}\) range.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aboudi, J., Arnold, S.M., Bednarcyk, B.A.: Micromechanics of Composite Materials. Elsevier, Amsterdam (2013)

    Google Scholar 

  2. Auriault, J.-L., Boutin, C., Geindreau, C.: Homogenization of Coupled Phenomena in Heterogenous Media, pp. 39–44. Wiley-ISTE, New York (2009)

    Book  Google Scholar 

  3. Banks-Sills, L., Leiderman, V., Fang, D.: On the effect of particle shape and orientation on elastic properties of metal matrix composites. Compos. Part B 28B, 465–481 (1997)

    Article  Google Scholar 

  4. Bayat, M., Aghdam, M.M.: A micromechanics-based analysis of effects of square and hexagonal fiber arrays in fibrous composites using DQEM. Eur. J. Mech.—A/Solids 32, 32–40 (2012)

    Article  Google Scholar 

  5. Berryman, J.G.: Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries. J. Mech. Phys. Solids 53, 2141–2173 (2005)

    Article  Google Scholar 

  6. Chamis, C.C.: Simplified composite micromechanics equations for hygral, thermal and mechanical properties. SAMPE Q. 15, 14–23 (1984)

    Google Scholar 

  7. Desmorat, R., Marull, R.: Non-quadratic Kelvin models based plasticity criteria for anisotropic materials. Int. J. Plast. 27, 328–351 (2011)

    Article  Google Scholar 

  8. Drago, A., Pindera, M.-J.: Micro-macromechanical analysis of heterogeneous materials: macroscopically homogeneous vs periodic microstructures. Compos. Sci. Technol. 67, 1246–1263 (2007)

    Google Scholar 

  9. Gan, H., Orozco, C.E., Herkovich, C.T.: A strain-compatible method for micromechanical analysis of multi-phase composites. Int. J. Solids Struct. 37, 5097–5122 (2000)

    Article  Google Scholar 

  10. Hashin, Z., Rosen, B.W.: The elastic moduli of fiber-reinforced materials. J. Appl. Mech. 31, 223–232 (1964)

    Article  Google Scholar 

  11. Herakovich, C.T.: Mechanics of Fibrous Composites. Wiley, New York (1998)

    Google Scholar 

  12. Herakovich, C.T., Aboudi, J.: Thermal effects in composites. In: Hetnarski, R.B. (ed.) Stresses, Thermal, pp. 1–142. Lastran Corporation-Publishing Division, Rochester (1999)

    Google Scholar 

  13. Hill, R.: Elastic properties of reinforced solids: some theoretical principles. J. Mech. Phys. Solids 11, 357–372 (1963)

    Article  Google Scholar 

  14. Jiang, C.P., Xu, Y.L., Chueng, Y.K., Lo, S.H.: A rigorous analytical method for doubly periodic cylindrical inclusions under longitudinal shear and its application. Mech. Mater. 36, 225–237 (2004)

    Article  Google Scholar 

  15. Kenaga, D., Doyle, J.F., Sun, C.T.: The characterization of boron/aluminium in the nonlinear ranges as an orthotropic elastic plastic material. J. Compos. Mater. 27, 516–531 (1987)

    Article  Google Scholar 

  16. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body (trans: English). Mir Publishers, Moscow (1981)

    Google Scholar 

  17. Li, S.: Boundary conditions for unit cells from periodic microstructures and their implications. Compos. Sci. Technol. 68, 1962–1974 (2008)

    Article  Google Scholar 

  18. Li, S., Wongsto, A.: Unit cells for micromechanical analyses of particle-reinforced composites. Mech. Mater. 36, 543–572 (2004)

    Article  Google Scholar 

  19. Liu, B., Feng, X., Zhang, S.-M.: The effective Young’s modulus of composites beyond the Voigt estimation due to the Poisson effect. Compos. Sci. Technol. 69, 2198–2204 (2009)

    Article  Google Scholar 

  20. Love, A.E.H.: Mathematical Theory of Elasticity. Dover Publications, New York (1944)

    Google Scholar 

  21. Martin-Herrero, J., Germain, C.: Microstructure reconstruction of fibrous C/C composites from X-ray microtomography. Carbon 45, 1242–1253 (2007)

    Article  Google Scholar 

  22. Mori, T., Tanaka, K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

    Article  Google Scholar 

  23. Nye, J.F.: Własności fizyczne kryształów. PWN, Warszawa (1962)

    Google Scholar 

  24. Ochoa, O.O., Reddy, J.N.: Finite Element Analysis of Composite Laminates. Kluwer Academic Publishers, Dordrecht (1992)

    Book  Google Scholar 

  25. Paley, M., Aboudi, J.: Micromechanical analysis of composites by generalized method of cells. Mech. Mater. 14, 127–139 (1992)

    Article  Google Scholar 

  26. Pidaparti, R.M.V., May, A.W.: A micromechanical analysis to predict the cord-rubber composite properties. Compos. Struct. 34, 361–369 (1996)

    Article  Google Scholar 

  27. Reuss, A.: Berechnung der Flissgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. angew. Math. Mech. 9, 49–58 (1929)

    Article  Google Scholar 

  28. Selvadurai, A.P.S., Nikopour, H.: Transverse elasticity of a unidirectionally reinforced composite with an irregular fiber arrangement: experiments, theory and computations. Compos. Struct. 94, 1973–1981 (2012)

    Article  Google Scholar 

  29. Sun, C.T., Chen, J.L.: A micromechanical model for plastic behavior of fibrous composites. Compos. Sci. Technol. 40, 115–129 (1990)

    Article  Google Scholar 

  30. Sun, C.T., Vaidya, R.S.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56, 171–179 (1996)

    Article  Google Scholar 

  31. Sun, C.T., Zhou, S.G.: Failure of quasi-isotropic composite laminates with free edges. J. Reinf. Plast. Compos. 7, 515–557 (1988)

    Article  Google Scholar 

  32. Tamma, K.K., Avila, A.F.: An integrated micro/macro modelling and computational methodology for high temperature composites. In: Hetnarski, R.B. (ed.) Thermal Stresses, pp. 143–256. Lastran Corporation-Publishing Division, Rochester (1999)

    Google Scholar 

  33. Tjong, S.C., Ma, Z.Y.: Microstructural and mechanical characteristics of in situ metal matrix composites. Mater. Sci. Eng. R29(3–4), 49–113 (2000)

    Article  Google Scholar 

  34. Voigt, W.: Über die Beziehungen zwischen beiden Elastizitätskonstanten isotroper Körpär. Wied. Ann. 38, 573–587 (1889)

    Article  Google Scholar 

  35. Whitney, J.M., Riley, M.B.: Elastic properties of fiber reinforced composite materials. AIAA J. 4, 1537–1542 (1966)

    Article  Google Scholar 

  36. Wongsto, A., Li, S.: Micromechanical FE analysis of UD fibre-reinforced composites with fibers distributed at random over the transverse cross-section. Compos. Part A 36, 1246–1266 (2005)

    Article  Google Scholar 

  37. Würkner, M., Berger, H., Gabbert, U.: On numerical evaluation of effective material properties for composite structures with rhombic arrangements. Int. J. Eng. Sci. 49, 322–332 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur W. Ganczarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ganczarski, A.W., Hernik, S., Skrzypek, J.J. (2015). Mechanics of Anisotropic Composite Materials. In: Skrzypek, J., Ganczarski, A. (eds) Mechanics of Anisotropic Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17160-9_3

Download citation

Publish with us

Policies and ethics