Skip to main content

Constitutive Equations for Isotropic and Anisotropic Linear Viscoelastic Materials

  • Chapter
  • First Online:
Mechanics of Anisotropic Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

In case of isotropic material symmetry, the elastic-viscoelastic correspondence principle is well established to provide the solution of linear viscoelasticity from the coupled fictitious elastic problem by use of the inverse Laplace transformation (Alfrey–Hoff’s analogy). Aim of this chapter is to show useful enhancement of the Alfrey–Hoff’s analogy to a broader class of material anisotropy for which separation of the volumetric and the shape change effects from total viscoelastic deformation does not occur. Such extension requires use of the vector–matrix notation to description of the general constitutive response of anisotropic linear viscoelastic material (see Pobiedria Izd. Mosk. Univ., (1984) [10]). When implemented to the composite materials which exhibit linear viscoelastic response, the classically used homogenization techniques for averaged elastic matrix, can be implemented to viscoelastic work-regime for associated fictitious elastic Representative Unit Cell of composite material. Next, subsequent application of the inverse Laplace transformation (cf. Haasemann and Ulbricht Technische Mechanik, 30(1–3), 122–135 (2010)) is applied. In a similar fashion, the well-established upper and lower bounds for effective elastic matrices can also be extended to anisotropic linear viscoelastic composite materials. The Laplace transformation is also a convenient tool for creep analysis of anisotropic composites that requires, however, limitation to the narrower class of linear viscoelastic materials. In the space of transformed variable \(s\), instead of time space \(t\), the classical homogenization rules for fictitious elastic composite materials can be applied. For the above reasons in what follows, we shall confine ourselves to the linear viscoelastic materials, isotropic, or anisotropic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altenbach, H.: Classical and non-classical creep models. In: Altenbach, H., Skrzypek, J.J. (eds.) Creep and Damage in Materials and Structures. CISM Courses and Lectures No. 399, pp. 45–96. Springer, Wien (1999)

    Chapter  Google Scholar 

  2. Betten, J.: Creep Mechanics, 3rd edn. Springer, Berlin (2008)

    Google Scholar 

  3. Byron, F.W., Fuller, M.D.: Mathematics of elliptic integrals for engineers and physicists. Springer, Berlin (1975)

    Google Scholar 

  4. Findley, W.N., Lai, J.S., Onaran, K.: Creep and Relaxation of Nonlinear Viscoplastic Materials. North-Holland, New York (1976)

    Google Scholar 

  5. Haasemann, G., Ulbricht, V.: Numerical evaluation of the viscoelastic and viscoplastic behavior of composites. Technische Mechanik 30(1–3), 122–135 (2010)

    Google Scholar 

  6. Krempl, E.: Creep-plastic interaction. In: Altenbach, H., Skrzypek, J.J. (eds.) Creep and Damage in Materials and Structures. CISM Courses and Lectures No. 399, pp. 285–348. Springer, Wien (1999)

    Chapter  Google Scholar 

  7. Murakami, S.: Continuum Damage Mechanics. Springer, Berlin (2012)

    Book  Google Scholar 

  8. Nowacki, W.: Teoria pełzania. Arkady, Warszawa (1963)

    Google Scholar 

  9. Pipkin, A.C.: Lectures on Viscoelasticity Theory. Springer, Berlin (1972)

    Book  Google Scholar 

  10. Pobedrya, B.E.: Mehanika kompozicionnyh materialov. Izd. Mosk. Univ. (1984)

    Google Scholar 

  11. Rabotnov, Ju.N.: Creep Problems of the Theory of Creep. North-Holland, Amsterdam (1969)

    Google Scholar 

  12. Shu, L.S., Onat, E.T.: On anisotropic linear viscoelastic solids. In: Proceedings of the Fourth Symposium on Naval Structures Mechanics, p. 203. Pergamon Press, London (1967)

    Google Scholar 

  13. Skrzypek, J.J.: In Hetnarski, R.B., (ed.) Plasticity and Creep, Theory, Examples, and Problems. Begell House/CRC Press, Boca Raton (1993)

    Google Scholar 

  14. Skrzypek, J.: Material models for creep failure analysis and design of structures. In: Altenbach, H., Skrzypek, J.J. (eds.) Creep and Damage in Materials and Structures. CISM Courses and Lectures No. 399, pp. 97–166. Springer, Wien (1999)

    Chapter  Google Scholar 

  15. Skrzypek, J., Ganczarski, A.: Modeling of Material Damage and Failure of Structures. Springer, Berlin (1999)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacek J. Skrzypek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Skrzypek, J.J., Ganczarski, A.W. (2015). Constitutive Equations for Isotropic and Anisotropic Linear Viscoelastic Materials. In: Skrzypek, J., Ganczarski, A. (eds) Mechanics of Anisotropic Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17160-9_2

Download citation

Publish with us

Policies and ethics