Skip to main content

Introduction to Mechanics of Anisotropic Materials

  • Chapter
  • First Online:
Mechanics of Anisotropic Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

This book is focused on constitutive description of mechanical behavior of engineering materials: both conventional (e.g., polycrystalline homogeneous isotropic or anisotropic metallic materials) and nonconventional ones (e.g., heterogeneous multicomponent usually anisotropic composite materials) fabricated by modern material engineering. Effective material properties at the macrolevel depend on both the material microstructure (isotropic or originally anisotropic in general case) and on dissipative phenomena occurred on fabrication and consecutive loading phase resulting in irreversible microstructure changes (acquired anisotropy). The material symmetry is a background and anisotropy is a core around which the book is formed. In this way a revision of classical rules of enhanced constitutive description of materials is required. The aim of this introductory chapter lies in providing, apart from classical definitions of tensor single invariants, also the choice of state variables necessary to describe irreversible microstructure changes accompanying coupled dissipative phenomena, and basic definitions of common invariants of either two second-order tensors (e.g., stress/strain and damage tensors) or two different-order tensors (e.g., stress/strain and fourth-order structural tensors). Concise classification of anisotropic materials with respect to symmetry of elastic matrices as referred to the crystal lattice symmetry is given, and extended analogy between symmetries of constitutive material matrices (elastic and yield/failure) is also discussed. Next, strain and complementary energy as function of either stress/strain invariants (initial elastic isotropy) or common stress/strain—damage invariants (damage acquired anisotropy) are mentioned. Constitutive equation of linear elasticity in terms of common invariants of strain and structural orthotropic tensors is given. The scope of this chapter provides necessary tools for more extended constitutive description of materials which exhibit either virgin anisotropy or damage or phase change acquired anisotropy following microstructure changes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abu Al-Rub, R.K., Voyiadjis, G.Z.: On the coupling of anisotropic damage and plasticity models for ductile materials. Int. J. Solids Struct. 40, 2611–2643 (2003)

    Article  Google Scholar 

  2. Berryman, J.G.: Bounds and self-consistent estimates for elastic constants of random polycrystals with hexagonal, trigonal, and tetragonal symmetries. J. Mech. Phys. Solids 53, 2141–2173 (2005)

    Article  Google Scholar 

  3. Betten, J.: Creep Mechanics. Springer, Berlin (2002)

    Book  Google Scholar 

  4. Bielski, J., Skrzypek, J., Kuna-Ciskał, H.: Implementation of a model of coupled elastic-plastic unilateral damage material to finite element code. Int. J. Damage Mech. 15(1), 5–39 (2006)

    Article  Google Scholar 

  5. Boehler, J.-P.: A simple derivation of representation for non-polynomial constitutive equations for some cases of anisotropy. Zeitschrift für Angewandte Mathematik und Mechanik 59, 157–167 (1979)

    Article  Google Scholar 

  6. Cauvin, A., Testa, R.B.: Damage mechanics: basic variables in continuum theories. Int. J. Solids Struct. 36, 747–761 (1999)

    Article  Google Scholar 

  7. Chaboche, J.L.: Description Thermodynamique et Phénoménologique de la Viscoplasticité Cyclique avec Endommagement. Thése Univ. Paris VI et Publication ONERA, No. pp. 1978-3 (1978)

    Google Scholar 

  8. Chaboche, J.L.: In: Boehler, J.P. (ed.) Mechanical Behavior of Anisotropic Solids. Martinus Nijhoff, Boston (1982)

    Google Scholar 

  9. Chen, X.F., Chow, C.L.: On damage strain energy release rate Y. Int. J. Damage Mech. 4, 3, 251–263 (1995)

    Article  Google Scholar 

  10. Cordebois, J.P., Sidoroff, F.: Damage induced elastic anisotropy, Coll. Euromech 115, Villard de Lans, also in Mechanical Behavior of Anisotropic Solids, In: Boehler, J.P. (ed.) Martinus Nijhoff, Boston. pp. 761–774 (1979)

    Google Scholar 

  11. Davison, L., Stevens, A.L.: Thermodynamical constitution of spalling elastic bodies. J. Appl. Phys. 44, 2, 668 (1973)

    Article  Google Scholar 

  12. Desmorat, R., Marull, R.: Non-quadratic Kelvin modes based plasticity criteria for anisotropic materials. Int. J. Plast. 27, 327–351 (2011)

    Article  Google Scholar 

  13. Egner, H.: On the full coupling between thermo-plasticity and thermo-damage in thermodynamic modeling of dissipative materials. Int. J. Solids Struct. 49, 279–288 (2012)

    Article  Google Scholar 

  14. Egner, H., Skoczeń, B.: Ductile damage development in two-phase metallic materials applied at cryogenic temperatures. Int. J. Plast. 26, 4, 488–506 (2010)

    Article  Google Scholar 

  15. Gambarotta, L., Lagomarsino, S.: A microcrack damage model for brittle materials. Int. J. Solids Struct. 30, 177–198 (1993)

    Article  Google Scholar 

  16. Gan, H., Orozco, C.E., Herkovich, C.T.: A strain-compatible method for micromechanical analysis of multi-phase composites. Int. J. Solids Struct. 37, 5097–5122 (2000)

    Article  Google Scholar 

  17. Ganczarski, A.: Problems of acquired anisotropy and coupled thermo-mechanical fields of CDM, Politechnika Krakowska, nr 25 (2001)

    Google Scholar 

  18. Hayakawa, K., Murakami, S.: Thermodynamical modeling of elastic-plastic damage and experimental validation of damage potential. Int. J. Damage Mech. 6, 333–362 (1997)

    Article  Google Scholar 

  19. Herakovich, C.T., Aboudi, J.: Thermal effects in composites. In: Hetnarski, R.B. (ed.) Thermal Stresses V, pp. 1–142. Lastran Corporation, Publishing Division, Rochester (1999)

    Google Scholar 

  20. Hill, R.: A theory of the yielding and plastic flow of anisotropic metals. Proc. R. Soc. Lond. A193, 281–297 (1948)

    Article  Google Scholar 

  21. Hill, R.: The Mathematical Theory of Plasticity. Clarendon Press, Oxford (1950)

    Google Scholar 

  22. Hu, Z.W., Marin, J.: Anisotropic loading functions for combined stresses in the plastic range. J. Appl. Mech. 22, 1 (1956)

    Google Scholar 

  23. Jastrzebski, Z.D.: The Nature and Properties of Engineering Materials. Wiley, New York (1987)

    Google Scholar 

  24. Kachanov, L.M.: O vremeni razrusheniya v usloviyah polzuchesti, Izvestiya AN SSSR. Otd. Mehn. Nauk. 8, 26–31 (1958)

    Google Scholar 

  25. Kachanov, L.M.: Osnovy mehaniki razrusheniya, Moskva, Nauka, Izdat (1974)

    Google Scholar 

  26. Kowalewski, Z.L., Śliwowski, M.: Effect of cyclic loading on the yield surface evolution of 18G2A low-alloy steel. Int. J. Mech. Sci. 39, 1, 51–68 (1997)

    Article  Google Scholar 

  27. Kowalsky, U., Ahrens, H., Dinkler, D.: Distorted yield surfaces-modelling by higher order anisotropic hardening tensors. Comput. Math. Sci. 16, 81–88 (1999)

    Article  Google Scholar 

  28. Krajcinovic, D., Fonseka, G.U.: The continuous damage theory of brittle materials, part I: general theory. Trans. ASME J. Appl. Mech. 48, 4, 809–815 (1981)

    Article  Google Scholar 

  29. Krajcinovic, D.: Damage mechanics. Mech. Mater. 8, 117–197 (1989)

    Article  Google Scholar 

  30. Krajcinovic, D.: Damage Mechanics. Elsevier, Amsterdam (1996)

    Google Scholar 

  31. Kuna-Ciskał, H., Skrzypek, J.: CDM based modelling of damage and fracture mechanisms in concrete under tension and compression. Eng. Fract. Mech. 71, 681–698 (2004)

    Article  Google Scholar 

  32. Lacy, T.E., McDowell, D.L., Willice, P.A., Talreja, R.: On the representation of damage evolution in continuum damage mechanics. Int. J. Damage Mech. 6, 62–95 (1997)

    Article  Google Scholar 

  33. Lekhnitskii, S.G.: Theory of Elasticity of an Anisotropic Body. Mir Publishers, in Russian: Nauka 1977, Moscow (1981)

    Google Scholar 

  34. Love, A.E.H.: A Treatise on the Mathematical Theory of Elasticity. Dover Publication, New York (1944)

    Google Scholar 

  35. Lubarda, V.A., Krajcinovic, D.: Damage tensors and the crack density distribution. Int. J. Solids Struct. 30, 20, 2859–2877 (1993)

    Article  Google Scholar 

  36. Malinin, N.N., Rżysko, J.: Mechanika materiałów. PWN, Warszawa (1981)

    Google Scholar 

  37. Mróz, Z., Maciejewski, J.: Failure criteria and compliance variation of anisotropically damaged materials. In: Skrzypek, J.J., Ganczarski, A. (eds.) Anisotropic Behaviour of Damaged Materials, Chap. 3, pp. 75–112. Springer, Berlin (2002)

    Google Scholar 

  38. Murakami, S., Kamiya, K.: Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics. Int. J. Mech. Sci. 39, 4, 473–486 (1997)

    Article  Google Scholar 

  39. Murakami, S., Ohno, N.: A continuum theory of creep and creep damage. In: Ponter, A.R.S., Hayhurst, D.R. (eds.) Creep in Structures, pp. 422–444. Springer, Berlin (1981)

    Chapter  Google Scholar 

  40. Murakami, S.: Continuum Damage Mechanics. Springer, Berlin (2012)

    Book  Google Scholar 

  41. Mursa, K.S.: Examination of orthotropic metal sheets under uniaxial tension (in Russian). Izv. Vys. Ucheb. Zav., Mash. 6 (1972)

    Google Scholar 

  42. Nye, J.F.: Physical Properties of Crystals Their Representations by Tensor and Matrices. Clarendon Press, Oxford (1957)

    Google Scholar 

  43. Onat, E.T., Leckie, F.A.: Representation of mechanical behavior in the presence of changing internal structure. J. Appl. Mech. Trans. ASME 55, 1–10 (1988)

    Article  Google Scholar 

  44. Ottosen, N.S., Ristinmaa, M.: The Mechanics of Constitutive Modeling. Elsevier, Amsterdam (2005)

    Google Scholar 

  45. Rabinovich, A.L.: On the elastic constants and strength of aircraft materials. Trudy Tsentr. Aero-gidrodin. Instr. 582, 1–56 (1946)

    Google Scholar 

  46. Rabotnov, YuN: O razrushenii vsledstvie polzuchesti. Zhurnal prikladnoĭ mehaniki i tehnicheskoĭ fiziki 2, 113–123 (1963)

    Google Scholar 

  47. Rymarz, Cz.: Mechanika ośrodków cia̧głych. PWN, Warszawa (1993)

    Google Scholar 

  48. Seweryn, A., Mróz, Z.: A non-local failure and damage evolution rule: application to a dilatant crack model. J. de Physique IV France 8, 257–268 (1998)

    Google Scholar 

  49. Skrzypek, J.: Podstawy mechaniki uszkodzeń. Wydawnictwo Politechniki Krakowskiej, Kraków (2006)

    Google Scholar 

  50. Skrzypek, J.J., Ganczarski, A.W., Rustichelli, F., Egner, H.: Advanced Materials and Structures for Extreme Operating Conditions. Springer, Berlin (2008)

    Google Scholar 

  51. Skrzypek, J., Ganczarski, A.: Modeling of Material Damage and Failure of Structures. Springer, Berlin (1999)

    Book  Google Scholar 

  52. Spencer, A.J.M.: Theory of invariants. In: Eringen, C. (ed.) Continuum Physics, pp. 239–353. Academic Press, New York (1971)

    Google Scholar 

  53. Sun, C.T., Vaidya, R.S.: Prediction of composite properties from a representative volume element. Compos. Sci. Technol. 56, 171–179 (1996)

    Article  Google Scholar 

  54. Taher, S.F., Baluch, M.H., Al-Gadhib, A.H.: Towards a canonical elastoplastic damage model. Eng. Fract. Mech. 48, 2, 151–166 (1994)

    Article  Google Scholar 

  55. Voyiadjis, G.Z., Kattan, P.I.: Evolution of fabric tensors in damage mechanics of solids with micro-cracks: part I—theory and fundamental concepts. Mech. Res. Commun. 34, 145–154 (2007)

    Article  Google Scholar 

  56. Yun-bing, L., Xing-fu, C.: The order of a damage tensor. Appl. Math. Mech. 10, 3, 251–258 (1989)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Artur W. Ganczarski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ganczarski, A.W., Egner, H., Skrzypek, J.J. (2015). Introduction to Mechanics of Anisotropic Materials. In: Skrzypek, J., Ganczarski, A. (eds) Mechanics of Anisotropic Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17160-9_1

Download citation

Publish with us

Policies and ethics