Skip to main content

The Application of Next Generation Sequencing Techniques to Plant Epigenomics

  • Chapter
  • 2195 Accesses

Abstract

Epigenetic processes such as DNA methylation and the posttranslational modifications of histones play key roles in the regulation of plant development and in response and adaptation to the environment. The complexity of these processes means it is often beneficial to study epigenetic modifications and pathways in a systematic, genome-wide manner.

The first epigenomic investigations used microarrays to detect genomic regions enriched in chromatin immunoprecipitation or methylated DNA precipitation assays. More recently the epigenomics field has been revolutionized by the appearance of next generation sequencing (NGS) based methods, some of which were first applied to plants. These have improved sensitivity and vastly broadened the type of experiments that are feasible. As these methods are not restricted to the few model plants for which microarrays exist, they can be applied to study a wide variety of species.

This chapter will outline the use of, and experimental design for methods including whole-genome bisulfite sequencing, ChIP-sequencing, MNase-Seq and small RNA-sequencing. The downstream processing and analysis of data from epigenomics experiments is major component of all epigenomics investigations and some of the available approaches and tools available for these tasks will be discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A et al (2012) methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol 13, R87

    Google Scholar 

  • Autran D, Baroux C, Raissig MT, Lenormand T, Wittig M, Grob S et al (2011) Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145:707–719

    Article  CAS  PubMed  Google Scholar 

  • Ballestar E, Paz MF, Valle L, Wei S, Fraga MF, Espada J et al (2003) Methyl-CpG binding proteins identify novel sites of epigenetic inactivation in human cancer. EMBO J 22:6335–6345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  • Becker C, Hagmann J, Muller J, Koenig D, Stegle O, Borgwardt K et al (2011) Spontaneous epigenetic variation in the Arabidopsis thaliana methylome. Nature 480:245–249

    Article  CAS  PubMed  Google Scholar 

  • Benhamed M, Martin-Magniette ML, Taconnat L, Bitton F, Servet C, De Clercq R et al (2008) Genome-scale Arabidopsis promoter array identifies targets of the histone acetyltransferase GCN5. Plant J 56:493–504

    Article  CAS  PubMed  Google Scholar 

  • Bentley DR (2006) Whole-genome re-sequencing. Curr Opin Genet Dev 16:545–552

    Article  CAS  PubMed  Google Scholar 

  • Bernstein BE, Humphrey EL, Erlich RL, Schneider R, Bouman P, Liu JS et al (2002) Methylation of histone H3 Lys 4 in coding regions of active genes. Proc Natl Acad Sci U S A 99:8695–8700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bird AP (1984) DNA methylation–how important in gene control? Nature 307:503–504

    Article  CAS  PubMed  Google Scholar 

  • Blankenberg D, Von Kuster G, Coraor N, Ananda G, Lazarus R, Mangan M et al (2010) Galaxy: a web-based genome analysis tool for experimentalists. Curr Protoc Mol Biol Chapter 19, Unit 19 0 1–21

    Google Scholar 

  • Boccara M, Sarazin A, Billoud B, Jolly V, Martienssen R, Baulcombe D et al (2007) New approaches for the analysis of Arabidopsis thaliana small RNAs. Biochimie 89:1252–1256

    Article  CAS  PubMed  Google Scholar 

  • Bossdorf O, Richards CL, Pigliucci M (2008) Epigenetics for ecologists. Ecol Lett 11:106–115

    PubMed  Google Scholar 

  • Calarco JP, Borges F, Donoghue MT, Van Ex F, Jullien PE, Lopes T et al (2012) Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151:194–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen YR, Zheng Y, Liu B, Zhong S, Giovannoni J, Fei Z (2012) A cost-effective method for Illumina small RNA-Seq library preparation using T4 RNA ligase 1 adenylated adapters. Plant Methods 8:41

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chodavarapu RK, Feng S, Bernatavichute YV, Chen PY, Stroud H, Yu Y et al (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466:388–392

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Clark SJ, Harrison J, Paul CL, Frommer M (1994) High sensitivity mapping of methylated cytosines. Nucleic Acids Res 22:2990–2997

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B, Haudenschild CD et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cortijo S, Wardenaar R, Colomé-Tatché M, Johannes F, and Colot V (2014) Genome-wide analysis of DNA methylation in Arabidopsis using MeDIP-chip. Methods Mol Biol. 1112:125–149

    Google Scholar 

  • Costa S, Shaw P (2007) 'Open minded’ cells: how cells can change fate. Trends Cell Biol 17:101–106

    Article  CAS  PubMed  Google Scholar 

  • Cubas P, Vincent C, Coen E (1999) An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401:157–161

    Article  CAS  PubMed  Google Scholar 

  • Dinh HQ, Dubin M, Sedlazeck FJ, Lettner N, Mittelsten Scheid O, von Haeseler A (2012) Advanced methylome analysis after bisulfite deep sequencing: an example in Arabidopsis. PLoS One 7:e41528

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dowen RH, Pelizzola M, Schmitz RJ, Lister R, Dowen JM, Nery JR et al (2012) Widespread dynamic DNA methylation in response to biotic stress. Proc Natl Acad Sci U S A 109:E2183–E2191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eichten SR, Swanson-Wagner RA, Schnable JC, Waters AJ, Hermanson PJ, Liu S et al (2011) Heritable epigenetic variation among maize inbreds. PLoS Genet 7:e1002372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • English JJ, Mueller E, Baulcombe DC (1996) Suppression of virus accumulation in transgenic plants exhibiting silencing of nuclear genes. Plant Cell 8:179–188

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng S, Cokus SJ, Zhang X, Chen PY, Bostick M, Goll MG et al (2010) Conservation and divergence of methylation patterning in plants and animals. Proc Natl Acad Sci U S A 107:8689–8694

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flores O, Orozco M (2011) nucleR: a package for non-parametric nucleosome positioning. Bioinformatics 27:2149–2150

    Article  CAS  PubMed  Google Scholar 

  • Flusberg BA, Webster DR, Lee JH, Travers KJ, Olivares EC, Clark TA et al (2010) Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7:461–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gilfillan GD, Hughes T, Sheng Y, Hjorthaug HS, Straub T, Gervin K et al (2012) Limitations and possibilities of low cell number ChIP-seq. BMC Genomics 13:645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gitan RS, Shi H, Chen CM, Yan PS, Huang TH (2002) Methylation-specific oligonucleotide microarray: a new potential for high-throughput methylation analysis. Genome Res 12:158–164

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C et al (2008) Identification of microRNAs and other small regulatory RNAs using cDNA library sequencing. Methods 44:3–12

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hansen KD, Langmead B, Irizarry RA (2012) BSmooth: from whole genome bisulfite sequencing reads to differentially methylated regions. Genome Biol 13:R83

    Article  PubMed Central  PubMed  Google Scholar 

  • Hardcastle TJ (2013) High-throughput sequencing of cytosine methylation in plant DNA. Plant Methods 9:16

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hardcastle TJ, Kelly KA (2013) Empirical Bayesian analysis of paired high-throughput sequencing data with a beta-binomial distribution. BMC Bioinformatics 14:135

    Article  PubMed Central  PubMed  Google Scholar 

  • Haring M, Offermann S, Danker T, Horst I, Peterhansel C, Stam M (2007) Chromatin immunoprecipitation: optimization, quantitative analysis and data normalization. Plant Methods 3:11

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • He G, Zhu X, Elling AA, Chen L, Wang X, Guo L et al (2010) Global epigenetic and transcriptional trends among two rice subspecies and their reciprocal hybrids. Plant Cell 22:17–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ho JW, Bishop E, Karchenko PV, Negre N, White KP, Park PJ (2011) ChIP-chip versus ChIP-seq: lessons for experimental design and data analysis. BMC Genomics 12:134

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Homer N, Merriman B, Nelson SF (2009) BFAST: an alignment tool for large scale genome resequencing. PLoS One 4:e7767

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Hsieh TF, Ibarra CA, Silva P, Zemach A, Eshed-Williams L, Fischer RL et al (2009) Genome-wide demethylation of Arabidopsis endosperm. Science 324:1451–1454

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ibarra CA, Feng X, Schoft VK, Hsieh TF, Uzawa R, Rodrigues JA et al (2012) Active DNA demethylation in plant companion cells reinforces transposon methylation in gametes. Science 337:1360–1364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobsen SE, Meyerowitz EM (1997) Hypermethylated SUPERMAN epigenetic alleles in Arabidopsis. Science 277:1100–1103

    Article  CAS  PubMed  Google Scholar 

  • Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Pugh BF (2009) Nucleosome positioning and gene regulation: advances through genomics. Nat Rev Genet 10:161–172

    Article  CAS  PubMed  Google Scholar 

  • Kalisz S, Kramer EM (2008) Variation and constraint in plant evolution and development. Heredity (Edinb) 100:171–177

    Article  CAS  Google Scholar 

  • Kanno T, Huettel B, Mette MF, Aufsatz W, Jaligot E, Daxinger L et al (2005) Atypical RNA polymerase subunits required for RNA-directed DNA methylation. Nat Genet 37:761–765

    Article  CAS  PubMed  Google Scholar 

  • Kaufmann K, Muino JM, Osteras M, Farinelli L, Krajewski P, Angenent GC (2010) Chromatin immunoprecipitation (ChIP) of plant transcription factors followed by sequencing (ChIP-SEQ) or hybridization to whole genome arrays (ChIP-CHIP). Nat Protoc 5:457–472

    Article  CAS  PubMed  Google Scholar 

  • Krueger F, Andrews SR (2011) Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27:1571–1572

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krueger F, Kreck B, Franke A, Andrews SR (2012) DNA methylome analysis using short bisulfite sequencing data. Nat Methods 9:145–151

    Article  CAS  PubMed  Google Scholar 

  • Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10:R25

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Ruan J, Durbin R (2008a) Mapping short DNA sequencing reads and calling variants using mapping quality scores. Genome Res 18:1851–1858

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li R, Li Y, Kristiansen K, Wang J (2008b) SOAP: short oligonucleotide alignment program. Bioinformatics 24:713–714

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang X, He K, Ma Y, Su N, He H et al (2008c) High-resolution mapping of epigenetic modifications of the rice genome uncovers interplay between DNA methylation, histone methylation, and gene expression. Plant Cell 20:259–276

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li P, Demirci F, Mahalingam G, Demirci C, Nakano M, Meyers BC (2013a) An integrated workflow for DNA methylation analysis. J Genet Genomics 40:249–260

    Article  PubMed  CAS  Google Scholar 

  • Li S, Garrett-Bakelman FE, Akalin A, Zumbo P, Levine R, To BL et al (2013b) An optimized algorithm for detecting and annotating regional differential methylation. BMC Bioinformatics 14 Suppl 5, S10

    Google Scholar 

  • Lindroth AM, Cao X, Jackson JP, Zilberman D, McCallum CM, Henikoff S et al (2001) Requirement of CHROMOMETHYLASE3 for maintenance of CpXpG methylation. Science 292:2077–2080

    Article  CAS  PubMed  Google Scholar 

  • Linsen SE, Cuppen E (2012) Methods for small RNA preparation for digital gene expression profiling by next-generation sequencing. Methods Mol Biol 822:205–217

    Article  CAS  PubMed  Google Scholar 

  • Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N, McCombie WR et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430:471–476

    Article  CAS  PubMed  Google Scholar 

  • Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC, Millar AH et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu ET, Pott S, Huss M (2010) Q&A: ChIP-seq technologies and the study of gene regulation. BMC Biol 8:56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Siegmund KD, Laird PW, Berman BP (2012) Bis-SNP: combined DNA methylation and SNP calling for Bisulfite-seq data. Genome Biol 13:R61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lu C, Meyers BC, Green PJ (2007) Construction of small RNA cDNA libraries for deep sequencing. Methods 43:110–117

    Article  PubMed  CAS  Google Scholar 

  • Luo C, Sidote DJ, Zhang Y, Kerstetter RA, Michael TP, Lam E (2012) Integrative analysis of chromatin states in Arabidopsis identified potential regulatory mechanisms for natural antisense transcript production. Plant J 73:77–90

    Google Scholar 

  • Madlung A, Comai L (2004) The effect of stress on genome regulation and structure. Ann Bot 94:481–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martienssen RA, Colot V (2001) DNA methylation and epigenetic inheritance in plants and filamentous fungi. Science 293:1070–1074

    Article  CAS  PubMed  Google Scholar 

  • Martienssen RA, Doerge RW, Colot V (2005) Epigenomic mapping in Arabidopsis using tiling microarrays. Chromosome Res 13:299–308

    Article  CAS  PubMed  Google Scholar 

  • Matzke M, Kanno T, Daxinger L, Huettel B, Matzke AJ (2009) RNA-mediated chromatin-based silencing in plants. Curr Opin Cell Biol 21:367–376

    Article  CAS  PubMed  Google Scholar 

  • McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McClintock B (1950) The origin and behavior of mutable loci in maize. Proc Natl Acad Sci U S A 36:344–355

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McClintock B (1956) Controlling elements and the gene. Cold Spring Harb Symp Quant Biol 21:197–216

    Article  CAS  PubMed  Google Scholar 

  • Meyer P (2011) DNA methylation systems and targets in plants. FEBS Lett 585:2008–2015

    Article  CAS  PubMed  Google Scholar 

  • Moghaddam AM, Roudier F, Seifert M, Berard C, Magniette ML, Ashtiyani RK et al (2011) Additive inheritance of histone modifications in Arabidopsis thaliana intra-specific hybrids. Plant J 67:691–700

    Article  CAS  PubMed  Google Scholar 

  • Muino JM, Hoogstraat M, van Ham RC, van Dijk AD (2011) PRI-CAT: a web-tool for the analysis, storage and visualization of plant ChIP-seq experiments. Nucleic Acids Res 39:W524–W527

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nellore A, Bobkov K, Howe E, Pankov A, Diaz A, Song JS (2012) NSeq: a multithreaded Java application for finding positioned nucleosomes from sequencing data. Front Genet 3:320

    PubMed Central  PubMed  Google Scholar 

  • Nicol JW, Helt GA, Blanchard SG Jr, Raja A, Loraine AE (2009) The Integrated Genome Browser: free software for distribution and exploration of genome-scale datasets. Bioinformatics 25:2730–2731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Oh E, Kang H, Yamaguchi S, Park J, Lee D, Kamiya Y et al (2009) Genome-wide analysis of genes targeted by PHYTOCHROME INTERACTING FACTOR 3-LIKE5 during seed germination in Arabidopsis. Plant Cell 21:403–419

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • O'Neill LP, Turner BM (2003) Immunoprecipitation of native chromatin: NChIP. Methods 31:76–82

    Article  PubMed  CAS  Google Scholar 

  • Parent JS, Martinez de Alba AE, Vaucheret H (2012) The origin and effect of small RNA signaling in plants. Front Plant Sci 3:179

    Article  PubMed Central  PubMed  Google Scholar 

  • Paszkowski J, Grossniklaus U (2011) Selected aspects of transgenerational epigenetic inheritance and resetting in plants. Curr Opin Plant Biol 14:195–203

    Article  CAS  PubMed  Google Scholar 

  • Pedersen B, Hsieh TF, Ibarra C, Fischer RL (2011) MethylCoder: software pipeline for bisulfite-treated sequences. Bioinformatics 27:2435–2436

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rada-Iglesias A, Bajpai R, Swigut T, Brugmann SA, Flynn RA, Wysocka J (2011) A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470:279–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G et al (2011) Integrative genomics viewer. Nat Biotechnol 29:24–26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rodrigues JA, Ruan R, Nishimura T, Sharma MK, Sharma R, Ronald PC et al (2013) Imprinted expression of genes and small RNA is associated with localized hypomethylation of the maternal genome in rice endosperm. Proc Natl Acad Sci U S A 110:7934–7939

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ronemus MJ, Galbiati M, Ticknor C, Chen J, Dellaporta SL (1996) Demethylation-induced developmental pleiotropy in Arabidopsis. Science 273:654–657

    Article  CAS  PubMed  Google Scholar 

  • Roudier F, Ahmed I, Berard C, Sarazin A, Mary-Huard T, Cortijo S et al (2011) Integrative epigenomic mapping defines four main chromatin states in Arabidopsis. EMBO J 30:1928–1938

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sani E, Herzyk P, Perrella G, Colot V, Amtmann A (2013) Hyperosmotic priming of Arabidopsis seedlings establishes a long-term somatic memory accompanied by specific changes of the epigenome. Genome Biol 14:R59

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Schmitz RJ, Schultz MD, Lewsey MG, O'Malley RC, Urich MA, Libiger O et al (2011) Transgenerational epigenetic instability is a source of novel methylation variants. Science 334:369–373

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmitz RJ, He Y, Valdes-Lopez O, Khan SM, Joshi T, Urich MA et al (2013a) Epigenome-wide inheritance of cytosine methylation variants in a recombinant inbred population. Genome Res

    Google Scholar 

  • Schmitz RJ, Schultz MD, Urich MA, Nery JR, Pelizzola M, Libiger O et al (2013b) Patterns of population epigenomic diversity. Nature 495:193–198

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schumacher A, Kapranov P, Kaminsky Z, Flanagan J, Assadzadeh A, Yau P et al (2006) Microarray-based DNA methylation profiling: technology and applications. Nucleic Acids Res 34:528–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith AD, Xuan Z, Zhang MQ (2008) Using quality scores and longer reads improves accuracy of Solexa read mapping. BMC Bioinformatics 9:128

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Song Q, Smith AD (2011) Identifying dispersed epigenomic domains from ChIP-Seq data. Bioinformatics 27:870–871

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Statham AL, Strbenac D, Coolen MW, Stirzaker C, Clark SJ, Robinson MD (2010) Repitools: an R package for the analysis of enrichment-based epigenomic data. Bioinformatics 26:1662–1663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stroud H, Greenberg MV, Feng S, Bernatavichute YV, Jacobsen SE (2013) Comprehensive analysis of silencing mutants reveals complex regulation of the Arabidopsis methylome. Cell 152:352–364

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization and epigenetics: how plants remember winter. Curr Opin Plant Biol 7:4–10

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Tadele Z, Hofmann I, Probst AV, Angelis KJ, Kaya H et al (2004) BRU1, a novel link between responses to DNA damage and epigenetic gene silencing in Arabidopsis. Genes Dev 18:782–793

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takuno S, Gaut BS (2013) Gene body methylation is conserved between plant orthologs and is of evolutionary consequence. Proc Natl Acad Sci U S A 110:1797–1802

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040

    Article  CAS  PubMed  Google Scholar 

  • Teixeira FK, Heredia F, Sarazin A, Roudier F, Boccara M, Ciaudo C et al (2009) A role for RNAi in the selective correction of DNA methylation defects. Science 323:1600–1604

    Article  CAS  PubMed  Google Scholar 

  • Tompa R, McCallum CM, Delrow J, Henikoff JG, van Steensel B, Henikoff S (2002) Genome-wide profiling of DNA methylation reveals transposon targets of CHROMOMETHYLASE3. Curr Biol 12:65–68

    Article  CAS  PubMed  Google Scholar 

  • Turck F, Roudier F, Farrona S, Martin-Magniette ML, Guillaume E, Buisine N et al (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:e86

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vaughn MW, Tanurdzic M, Lippman Z, Jiang H, Carrasquillo R, Rabinowicz PD et al (2007) Epigenetic natural variation in Arabidopsis thaliana. PLoS Biol 5:e174

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vu TM, Nakamura M, Calarco JP, Susaki D, Lim PQ, Kinoshita T et al (2013) RNA-directed DNA methylation regulates parental genomic imprinting at several loci in Arabidopsis. Development 140:2953–2960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wassenegger M, Heimes S, Riedel L, Sanger HL (1994) RNA-directed de novo methylation of genomic sequences in plants. Cell 76:567–576

    Article  CAS  PubMed  Google Scholar 

  • Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M, Lam WL et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  CAS  PubMed  Google Scholar 

  • Wei G, Hu G, Cui K, Zhao K (2012) Genome-wide mapping of nucleosome occupancy, histone modifications, and gene expression using next-generation sequencing technology. Methods Enzymol 513:297–313

    Article  CAS  PubMed  Google Scholar 

  • Weinmann AS, Yan PS, Oberley MJ, Huang TH, Farnham PJ (2002) Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev 16:235–244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilbanks EG, Facciotti MT (2010) Evaluation of algorithm performance in ChIP-seq peak detection. PLoS One 5:e11471

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wollmann H, Holec S, Alden K, Clarke ND, Jacques PE, Berger F (2012) Dynamic deposition of histone variant H3.3 accompanies developmental remodeling of the Arabidopsis transcriptome. PLoS Genet 8:e1002658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Woo S, Zhang X, Sauteraud R, Robert F, Gottardo R (2013) PING 2.0: an R/Bioconductor package for nucleosome positioning using next-generation sequencing data. Bioinformatics 29(16):2049–2050

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xi Y, Li W (2009) BSMAP: whole genome bisulfite sequence MAPping program. BMC Bioinformatics 10:232

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Xing H, Mo Y, Liao W, Zhang MQ (2012) Genome-wide localization of protein-DNA binding and histone modification by a Bayesian change-point method with ChIP-seq data. PLoS Comput Biol 8:e1002613

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu H, Wei CL, Lin F, Sung WK (2008) An HMM approach to genome-wide identification of differential histone modification sites from ChIP-seq data. Bioinformatics 24:2344–2349

    Article  CAS  PubMed  Google Scholar 

  • Zang C, Schones DE, Zeng C, Cui K, Zhao K, Peng W (2009) A clustering approach for identification of enriched domains from histone modification ChIP-Seq data. Bioinformatics 25:1952–1958

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zemach A, Kim MY, Hsieh PH, Coleman-Derr D, Eshed-Williams L, Thao K et al (2013) The Arabidopsis nucleosome remodeler DDM1 allows DNA methyltransferases to access H1-containing heterochromatin. Cell 153:193–205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zeng PY, Vakoc CR, Chen ZC, Blobel GA, Berger SL (2006) In vivo dual cross-linking for identification of indirect DNA-associated proteins by chromatin immunoprecipitation. Biotechniques 41:694, 696, 698

    Google Scholar 

  • Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9:R137

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhang YY, Fischer M, Colot V, Bossdorf O (2013) Epigenetic variation creates potential for evolution of plant phenotypic plasticity. New Phytol 197:314–322

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Ren N, Wang H, Stromberg AJ, Perry SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21:2563–2577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu LJ, Gazin C, Lawson ND, Pages H, Lin SM, Lapointe DS et al (2010) ChIPpeakAnno: a bioconductor package to annotate ChIP-seq and ChIP-chip data. BMC Bioinformatics 11:237

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Zhu JY, Sun Y, Wang ZY (2012) Genome-wide identification of transcription factor-binding sites in plants using chromatin immunoprecipitation followed by microarray (ChIP-chip) or sequencing (ChIP-seq). Methods Mol Biol 876:173–188

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manu J. Dubin Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Dubin, M.J. (2015). The Application of Next Generation Sequencing Techniques to Plant Epigenomics. In: Sablok, G., Kumar, S., Ueno, S., Kuo, J., Varotto, C. (eds) Advances in the Understanding of Biological Sciences Using Next Generation Sequencing (NGS) Approaches. Springer, Cham. https://doi.org/10.1007/978-3-319-17157-9_2

Download citation

Publish with us

Policies and ethics