Skip to main content

Genes and Trans-Factors Underlying Embryogenic Transition in Plant Soma-Cells

  • Chapter

Abstract

Somatic embryogenesis (SE) is one of the most important modes of plant-regeneration in which somatic cells get converted into embryos and further into plantlets. Conversion of soma-cells to embryos is an extraordinarily complex mechanism and several genic-factors might be responsible for such transition. Study of the expression and function of these key factors will provide clues for the mechanism of induced regeneration potential in plants. It is evident that somatic embryogenic potential may be induced through different stress conditions provided to the cell. At molecular level, altered endogenous level of auxin influences the downstream processing required for the induction of embryogenic potential. Early auxin-inducible signalling genes which include somatic embryogenesis receptor kinases (SERKs) decreased significantly upon auxin depletion, thereby suggesting for their direct role in the induction of embryogenesis. Also, stress condition may ‘turn-on’ mechanisms such as DNA methylation, chromatin remodeling and other genetic and/or cellular trans-factors responsible for the induction of somatic embryogenesis such as up-regulation of transcription factor WRKY, Ca2+ ion-mediated signalling and mitochondrial alternative oxidase (AOX) genes reported earlier to be essential for cell-restructuring and induction of embryogenesis. Antioxidant levels in the cell also increased to counterbalance the excessive induced stress that may lead to cell death. In this article, both direct and indirect roles of genes and other trans-factors considered to be essential for the induction of plant somatic embryogenesis are highlighted and at times suggested for experimental validation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Albrecht C, Russinova E, Kemmerling B, Kwaaitaal M, de Vries S (2008) Arabidopsis somatic embryogenesis receptor kinase protein serves brassinosteroid-dependent and independent signalling pathway. Plant Physiol 148:611–619

    CAS  PubMed Central  PubMed  Google Scholar 

  • Alexandrova KS, Conger BV (2002) Isolation of two somatic embryogenesis-related genes from orchard grass (Dactylis glomerata). Plant Sci 162:301–307

    CAS  Google Scholar 

  • Ali A, Naz S, Iqbal J (2007) Effect of different explants and media compositions for efficient somatic embryogenesis in sugarcane (Saccaharum officinarum). Pak J Bot 39:1961–1977

    Google Scholar 

  • Anil V, Rao K (2000) Calcium-mediated signaling during sandalwood somatic embryogenesis. Role for exogenous calcium as second messenger. Plant Physiol 123:1301–1311

    CAS  PubMed Central  PubMed  Google Scholar 

  • Antoine A, Faure J, Cordeiro S, Dumas C, Rougier M, Feijo J (2000) A calcium influx is triggered and propagates in the zygote as a wavefront during in vitro fertilization of flowering plants. Proc Natl Acad Sci U S A 97:10643–10648

    CAS  PubMed Central  PubMed  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55(1):373–399

    CAS  PubMed  Google Scholar 

  • Aruna M, Reddy GM (1988) Genotypic differences in callus initiation and plant regeneration from anthers of indica rice. Curr Sci 57:1014–1017

    Google Scholar 

  • Atta R, Laurens L, Boucheron-Dubuisson E, Guivarc’h A, Carnero E, Giraudat-Pautot V et al (2009) Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro. Plant J 57:626–644

    CAS  PubMed  Google Scholar 

  • Auboiron E, Carron M-P, Michaux-Ferrière N (1990) Influence of atmospheric gases, particularly ethylene, on somatic embryogenesis of Hevea brasiliensis. Plant Cell Tiss Org Cult 21:31–37

    CAS  Google Scholar 

  • Aydin Y, Talas-Oğraş T, Altinkut A, Ismailoğlu I, Arican E, Gozukirmizi N (2010) Cytohistological studies during cotton somatic embryogenesis with brassinosteroid application. IUFS J Biol 69:33–39

    Google Scholar 

  • Bailey MA, Boerma HR, Parrott WA (1993) Genotype effects on proliferative embryogenesis and plant regeneration of soybean. In Vitro Cell Dev Biol – Plant 29:102–108

    Google Scholar 

  • Baudino S, Brettschneider R, Hecht V, Dresselhaus T, Lorz H, Dumas C et al (2001) Molecular characterization of novel maize LRR receptor-like kinases, which belong to the SERK family. Planta 213:1–10

    CAS  PubMed  Google Scholar 

  • Bhalla PL, Singh MB (2006) Molecular control of stem cell maintenance in shoot apical meristem. Plant Cell Rep 25:249–256

    CAS  PubMed  Google Scholar 

  • Bouchabké-Coussa O, Obellianne M, Linderme D, Montes E, Maia-Grondard A, Vilaine F et al (2013) Wuschel overexpression promotes somatic embryogenesis and induces organogenesis in cotton (Gossypium hirsutum L.) tissues cultured in vitro. Plant Cell Rep. doi:10.1007/s00299-013-1402-9

  • Boutilier K, Offringa R, Sharma VK, Kieft H, Ouellet T, Zhang LM et al (2002) Ectopic expression of BABY BOOM triggers a conversion from vegetative to embryonic growth. Plant Cell 14:1737–1749

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bowler C, Montagu MV, Inze D (1992) Superoxide dismutase and stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 43(1):83–116

    CAS  Google Scholar 

  • Braybrook S, Stone S, Park S, Bui A, Le B, Fischer R et al (2006) Genes directly regulated by LEAFY COTYLEDON2 provide insight into the control of embryo maturation and somatic embryogenesis. Proc Natl Acad Sci U S A 103:3468–3473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brownfield L, Ford K, Doblin MS, Newbigin E, Read S, Bacic A (2007) Proteomic and biochemical evidence links the callose synthase in Nicotiana alata pollen tubes to the product of the NaGSL1 gene. Plant J 52:147–156

    CAS  PubMed  Google Scholar 

  • Cakmak I, Römheld V (1997) Boron deficiency-induced impairments of cellular functions in plants. Plant Soil 193:71–83

    CAS  Google Scholar 

  • Canhoto JM, Mesquita JF, Cruz GS (1996) Ultrastructural changes in cotyledons of pineapple guava (Myrtaceae) during somatic embryogenesis. Ann Bot 78:513–521

    Google Scholar 

  • Carimi F, Barizza E, Gardiman M, Lo Schiavo F (2005) Somatic embryogenesis from stigmas and styles of grapevine. In Vitro Cell Dev Biol – Plant 41:249–252

    CAS  Google Scholar 

  • Carman JG (1990) Embryogenic cells in plant tissue cultures: occurrence and behavior. In Vitro Cell Dev Biol 26:746–753

    Google Scholar 

  • Cary A, Che P, Howell S (2002) Developmental events and shoot apical meristem gene expression patterns during shoot development in Arabidopsis thaliana. Plant J 32:867–877

    CAS  PubMed  Google Scholar 

  • Casson S, Spencer M, Walker K, Lindsey K (2005) Laser capture microdissection for the analysis of gene expression during embryogenesis of Arabidopsis. Plant J 42:111–123

    CAS  PubMed  Google Scholar 

  • Charrière F, Hahne G (1998) Induction of embryogenesis versus caulogenesis on in vitro cultured sunflower (Helianthus annuus L.) immature zygotic embryos: role of plant growth regulators. Plant Sci 137:63–71

    Google Scholar 

  • Chen L et al (2011) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta. doi:10.1016/j.bbagrm.2011.09.002

  • Cheong Y, Chang H, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chugh A, Khurana P (2002) Gene expression during somatic embryogenesis-recent advances. Curr Sci 83:715–730

    CAS  Google Scholar 

  • Cueva Agila AY, Guachizaca I, Cella R (2013) Combination of 2,4-D and stress improves indirect somatic embryogenesis in Cattleya maxima Lindl. Plant Biosyst – Int J Dealing Asp Plant Biol 1–7

    Google Scholar 

  • Cueva A, Concia L, Cella R (2012) Molecular characterization of a Cyrtochilum loxense somatic embryogenesis receptor-like kinase (SERK) gene expressed during somatic embryogenesis. Plant Cell Rep 31:1129–1139

    CAS  PubMed  Google Scholar 

  • Cui KR, Pei XW, Qin L, Wang JJ, Wang YF (1998) Effects of modulation of abscisic acid during somatic embryogenesis in Lycium barbarum L. Shi Yan Sheng Wu Xue Bao 31:195–201 (in Chinese)

    CAS  PubMed  Google Scholar 

  • de Vries SC, Booij H, Meyerink P, Huisman G, Wilde DH, Thomas ΤL et al (1988) Acquisition of embryogenic potential in carrot cell suspension cultures. Planta 176:196–204

    PubMed  Google Scholar 

  • Dodeman V, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Bot 48:1493–1509

    CAS  Google Scholar 

  • Du H, Liu H, Xiong L (2013) Endogenous auxin and jasmonic acid levels are differentially modulated by abiotic stresses in rice. Front Plant Physiol 4:397

    Google Scholar 

  • Dubois T, Guedira M, Dubois J, Vasseur J (1991) Direct somatic embryogenesis in leaves of Cichorium. Protoplasma 162:120–127

    Google Scholar 

  • Dure L, Crouch M, Harada J, Ho T, Mundy J, Quatrano R et al (1989) Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol Biol 12:475–486

    CAS  PubMed  Google Scholar 

  • Feher A, Pasternak TP, Dudits D (2003) Transition of somatic plant cells to an embryogenic state. Plant Cell Tiss Org Cult 74:201–228

    CAS  Google Scholar 

  • Frederico AM, Campos MD, Cardoso HG, Imani J, Arnholdt-Schmitt B (2009) Alternative oxidase involvement in Dacus carota somatic embryogenesis. Physiol Plant 137:498–508

    CAS  PubMed  Google Scholar 

  • Fujimura T, Komamine A (1975) Effects of various growth regulators on the embryogenesis in a carrot cell suspension culture. Plant Sci Lett 5:359–364

    CAS  Google Scholar 

  • Fujimura T, Komamine A (1980) Mode of action of 2,4-D and zeatin on somatic embryogenesis in a carrot cell suspension culture. Z Pflanzenphysiol 99:1–8

    CAS  Google Scholar 

  • Fujimura T, Komaminea A (1979) Involvement of endogenous auxin in somatic embryogenesis in a carrot cell suspension culture. Z Pflanzenphysiol 95:13–19

    CAS  Google Scholar 

  • Gall OL, Torregrosa L, Danglot Y, Candresse T, Bouquet A (1994) Agrobacterium-mediated genetic transformation of grapevine somatic embryos and regeneration of transgenic plants expressing the coat protein of grapevine chrome mosaic nepovirus (GCMV). Plant Sci 102:161–170

    Google Scholar 

  • Galland R, Randoux B, Vasseur J, Hilbert J (2001) Glutathione S transferase cDNA identified by mRNA differential display is upregulated during somatic embryogenesis in Cichorium. Biochim Biophys Acta 1522:212–216

    CAS  PubMed  Google Scholar 

  • Gavish H, Vardi A, Fluhr R (1991) Extra-cellular proteins and early embryo development in Citrus nucellar cell cultures. Physiol Plant 82:601–616

    Google Scholar 

  • Ge X-X, Chai L-J, Liu Z, Wu X-M, Deng X-X, Guo W-W (2012) Transcriptional profiling of genes involved in embryogenic, non-embryogenic calluses and somatic embryogenesis of Valencia sweet orange by SSH based microarray. Planta 236:1107–1124

    CAS  PubMed  Google Scholar 

  • Gordon S, Heisler M, Reddy G, Ohno C, Das P, Meyerowitz E (2007) Pattern formation during de novo assembly of the Arabidopsis shoot meristem. Development 134:3539–3548

    CAS  PubMed  Google Scholar 

  • Gray DJ, Conger BV, Hanning GE (1984) Somatic embryogenesis in suspension and suspension-derived callus cultures of Dactylis glomerata. Protoplasma 122:196–202

    Google Scholar 

  • Gray DJ, Trigiano RN, Conger BV (1993) Liquid suspension culture production of orchardgrass somatic embryos and their potential for the breeding of improved varieties. CRC Press, Boca Raton

    Google Scholar 

  • Gribaudo I, Gambino G, Vallania R (2004) Somatic embryogenesis from grapevine anthers: identification of the optimal developmental stage for collecting explants. Am J Enol Vitic 55:427–430

    Google Scholar 

  • Guiderdoni E, Mérot B, Eksomtramage T, Paulet F, Feldmann P, Glaszmann JC (1995) Somatic embryogenesis in sugarcane (Saccharum species). In: Bajaj YPS (ed) Somatic embryogenesis and synthetic seed II. Springer, Berlin, pp 92–113

    Google Scholar 

  • Hanning GE, Conger BV (1982) Embryoid and plantlet formation from leaf segments of Dactylis glomerata L. Theor Appl Genet 63:155–159

    CAS  PubMed  Google Scholar 

  • Hatanaka T, Sawabe E, Azuma T, Uchida N, Yasuda T (1995) The role of ethylene in somatic embryogenesis from leaf discs of Coffea canephora. Plant Sci 107:199–204

    CAS  Google Scholar 

  • Hatzopoulos P, Fong F, Sung Z (1990) Abscisic acid regulation of DC8, a carrot embryonic gene. Plant Physiol 94:690–695

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hecht V, Vielle-Calzada J, Hartog M, Schmidt E, Boutilier K, Grossniklaus U et al (2001) The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiol 127:803–816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heidmann I, Lambalk J, Joosen R, Angenent G, Custers J, Boutilier K (2006) Expression of BABY BOOM induces somatic embryogenesis in tobacco. Int Conf “Haploids in Higher Plants III”, Vienna, Austria, vol 52, pp 12–15

    Google Scholar 

  • Hita O, Lafarga C, Guerra H (1997) Somatic embryogenesis from chickpea (Cicer arietinum L.) immature cotyledons: the effect of zeatin, gibberellic acid and indole-3-butyric acid. Acta Physiol Plant 19:333–338

    CAS  Google Scholar 

  • Ho W-J, Vasil IK (1983) Somatic embryogenesis in sugarcane (Saccharum officinarum L.). I. The morphology and physiology of callus formation and the ontogeny of somatic embryos. Protoplasma 118:169–180

    Google Scholar 

  • Horstman A, Fukuoka H, Weemen M, Angenent G, Fiers M, Boutilier K (2009). Signalling components of BABY BOOM-induced somatic embryogenesis. Plant Research International, Wageningen, The Netherlands, National Institute of Vegetable and Tea Science, Mie, Japan

    Google Scholar 

  • Hu H, Xiong L, Yang Y (2005) Rice SERK1 gene positively regulates somatic embryogenesis of cultured cell and host defense response against fungal infection. Planta 222:107–117

    CAS  PubMed  Google Scholar 

  • Huang X, Li X, Li Y, Huang L (2001) The effect of AOA on ethylene and polyamine metabolism during early phases of somatic embryogenesis in Medicago sativa. Physiol Plant 113:424–429

    CAS  PubMed  Google Scholar 

  • Hughes D, Galau G (1991) Developmental and environmental induction of Lea and LeaA mRNAs and the postabscission program during embryo culture. Plant Cell 3:605–618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hutchinson MJ, KrishnaRaj S, Saxena PK (1997) Inhibitory effect of GA3 on the development of thidiazuron-induced somatic embryogenesis in geranium (Pelargonium·hortorum Bailey) hypocotyl cultures. Plant Cell Rep 16:435–438

    CAS  Google Scholar 

  • Iantcheva A, Vlahova M, Bakalova E, Kondorosi E, Elliott MC, Atanassov A (1999) Regeneration of diploid annual medics via direct somatic embryogenesis promoted by thidiazuron and benzylaminopurine. Plant Cell Rep 18:904–910

    CAS  Google Scholar 

  • Ikeda M, Umehara M, Kamada H (2006) Embryogenesis-related genes; its expression and roles during somatic and zygotic embryogenesis in carrot and Arabidopsis. Plant Biotechnol 23:153–161

    CAS  Google Scholar 

  • Indra AP, Krishnaveni S (2009) Effect of hormones, explants and genotypes in in vitro culturing of sorghum. J Biochem Technol 1:96–103

    Google Scholar 

  • Ito Y, Takaya K, Kurata N (2005) Expression of SERK family receptor-like protein kinase genes in rice. Biochim Biophys Acta 1730:253–258

    CAS  PubMed  Google Scholar 

  • Ivanova A, Velcheva M, Denchev P, Atanassov A, Van OH (1994) Endogenous hormone levels during direct somatic embryogenesis in Medicago falcata. Physiol Plant 92:85–89

    CAS  Google Scholar 

  • Iwai M, Umehara M, Satoh S, Kamada H (2003) Stress-induced somatic embryogenesis in vegetative tissues of Arabidopsis thaliana. Plant J 34:107–114

    Google Scholar 

  • Jackson C, Casanova J (2000) Turning on ARF: the Sec7 family of guanine-nucleotide-exchange factors. Trends Cell Biol 10:60–67

    CAS  PubMed  Google Scholar 

  • Jain M, Khurana JP (2009) Transcript profiling reveals diverse roles of auxin-responsive genes during reproductive development and abiotic stress in rice. FEBS J 276:3148–3162

    CAS  PubMed  Google Scholar 

  • Jansen M, Booij H, Schel J, de Vries S (1990) Calcium increases the yield of somatic embryos in carrot embryogenic suspension cultures. Plant Cell Rep 9:221–223

    CAS  PubMed  Google Scholar 

  • Jiménez VM (2001) Regulation of in vitro somatic embryogenesis with emphasis on the role of endogenous hormones. Revista Brasileira de Fisiologia Vegetal 13(2):196–223

    Google Scholar 

  • Jiménez VM (2005) Involvement of plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regul 47:91–110

    Google Scholar 

  • Jimenez VM, Bangerth F (2001) Hormonal status of maize initial explants and of the embryogenic and non-embryogenic callus cultures derived from them as related to morphogenesis in vitro. Plant Sci 160(2):247–257

    CAS  PubMed  Google Scholar 

  • Jiménez V, Bangerth F (2001a) Endogenous hormone levels in explants and in embryogenic and non-embryogenic cultures of carrot. Physiol Plant 111:389–395

    PubMed  Google Scholar 

  • Jiménez VM, Bangerth F (2001b) Endogenous hormone levels in initial explants and in embryogenic and non-embryogenic callus cultures of competent and non-competent wheat genotypes. Plant Cell Tiss Org Cult 67:37–46

    Google Scholar 

  • Jones TJ, Rost TL (1989) The developmental anatomy and ultrastructural of somatic embryos from rice (Oryza sativa L.) scutellum epithelial cells. Bot Gaz 150:41–49

    Google Scholar 

  • Kairong C, Gengsheng X, Xinmin L, Gengmei X, Yafu W (1999) Effect of hydrogen peroxide on somatic embryogenesis of Lycium barbarum L. Plant Sci 146:9–16

    Google Scholar 

  • Kamada H, Kobayashi K, Kiyosue T, Hiroshi H (1989) Stress induced somatic embryogenesis in carrot and its application to synthetic seed production. In Vitro Cell Dev Biol 25:1163–1166

    Google Scholar 

  • Kamada H, Ishikawa K, Saga H, Harada H (1993) Induction of somatic embryogenesis in carrot by osmotic stress. Plant Tissue Cult Lett 10:38–44

    CAS  Google Scholar 

  • Kamada H, Tachikawa Y, Saitou T, Harada H (1994) Heat stresses induction of carrot somatic embryogenesis. Plant Tissue Cult Lett 11:229–232

    Google Scholar 

  • Karami O, Deljou A, Esna-Ashari M, Ostad-Ahmadi P (2006) Effect of sucrose concentrations on somatic embryogenesis in carnation (Dianthus caryophyllus L.). Sci Hortic 110:340–344

    CAS  Google Scholar 

  • Kasajima I, Ide Y, Hirai MY, Fujiwara T (2010) WRKY6 is involved in the response to boron deficiency in Arabidopsis thaliana. Physiol Plant 139:80–92

    CAS  PubMed  Google Scholar 

  • Kawahara R, Komamine A (1995) Molecular basis of somatic embryogenesis. In: Bajaj Y (ed) Biotechnology in agriculture and forestry, somatic embryogenesis and synthetic seed. Springer, Berlin, pp 30–40

    Google Scholar 

  • Kepczynski J, Mckersie BD, Brown DCW (1992) Requirement of ethylene for growth of callus and somatic embryogenesis in Medicago sativa L. J Exp Bot 43:1199–1202

    CAS  Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Higashi K, Satoh S, Kamada H et al (1992) Isolation and characterization of a cDNA that encodes ECP31, an embryogenic-cell protein from carrot. Plant Mol Biol 19:239–249

    CAS  PubMed  Google Scholar 

  • Kiyosue T, Satoh S, Kamada H, Harada H (1993a) Somatic embryogenesis in higher plants. J Plant Res 3:75–82

    Google Scholar 

  • Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki K, Kamada H, Harada H (1993b) cDNA cloning of ECP40, an embryogenic-cell protein in carrot, and its expression during somatic and zygotic embryogenesis. Plant Mol Biol 21(6):1053–1068

    CAS  PubMed  Google Scholar 

  • Kobayashi T, Higashi K, Sasaki K, Asami T, Yoshida S, Kamada H (2000) Purification from conditioned medium and chemical identification of a factor that inhibits somatic embryogenesis in carrot. Plant Cell Physiol 41:268–273

    CAS  PubMed  Google Scholar 

  • Kochba J, Spiegel-Roy P, Neumann H, Saad S (1978) Stimulation of embryogenesis in Citrus ovular callus by ABA, Ethephon, CCC and Alar and its suppression by GA3. Z Pflanzenphysiol 89:427–432

    CAS  Google Scholar 

  • Kong L, Von Aderkas P (2007) Genotype effects on ABA consumption and somatic embryo maturation in interior spruce (Picea glauca × engelmanni). J Exp Bot 58:1525–1531

    CAS  PubMed  Google Scholar 

  • Kong L, Yeung E (1994) Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Sci 104:71–80

    CAS  Google Scholar 

  • Kong L, Attree S, Evans D, Binarova P, Yeung E, Fowke L (1999) Somatic embryogenesis in white spruce: studies of embryo development and cell biology. In: Jain SM, Gupta PK, Newton RJ (eds) Somatic embryogenesis in woody plants. Kluwer Academic Publishers, Dordrecht, pp 1–28

    Google Scholar 

  • Kulinska-Lukaszek K, Tobojka M, Adamiok A, Kurczynska EU (2012) Expression of the BBM gene during somatic embryogenesis of Arabidopsis thaliana. Biol Plant 56:389–394

    CAS  Google Scholar 

  • Kumar PP, Joy RW IV, Thorpe TA (1989) Ethylene and carbon dioxide accumulation, and growth of cell suspension cultures of Picea glauca (white spruce). J Plant Physiol 135:592–596

    Google Scholar 

  • Kumria R, Sunnichan V, Das D, Gupta S, Reddy V, Bhatnagar R et al (2003) High-frequency somatic embryo production and maturation into normal plants in cotton (Gossypium hirsutum) through metabolic stress. Plant Cell Rep 21:635–639

    CAS  PubMed  Google Scholar 

  • Lagace M, Matton DP (2004) Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta 219:185–189

    CAS  PubMed  Google Scholar 

  • Lee E, Cho D, Soh W (2001) Enhanced production and germination of somatic embryos by temporary starvation in tissue cultures of Daucus carota. Plant Cell Rep 20:408–415

    CAS  Google Scholar 

  • Li T, Neumann KH (1985) Embryogenesis and endogenous hormone content of cell cultures of some carrot varieties (Daucus carota L.). Ber Deutsch Bot Ges 98:227–235

    Google Scholar 

  • Li T, Chen J, Qiu S, Zhang Y, Wang P, Yang L et al (2012) Deep sequencing and microarray hybridization identify conserved and species-specific microRNAs during somatic embryogenesis in hybrid yellow poplar. PLoS One 7. doi:10.1371/journal.pone.0043451

  • Liu QC, Kokubu T, Sato M (1992) Varietal differences of somatic embryogenesis in shoot tip culture of sweetpotato, Ipomoea batatas (L.) Lam. Jpn J Breed 42:8–9

    Google Scholar 

  • Liu CM, Xu ZH, Chua NH (1993) Auxin polar transport is essential for the establishment of bilateral symmetry during early plant embryogenesis. Plant Cell Rep 5:621–630

    CAS  Google Scholar 

  • Maeda E, Radi SH (1991) Ultrastructural aspects of rice scutellum as related to seminal root cultures. Biotechnol Agric For (Rice) 14:78–91

    Google Scholar 

  • Maheswaran G, Williams EG (1985) Origin and development of somatic embryoids formed directly on immature embryos of Trifolium repens in vitro. Ann Bot 56:619–630

    Google Scholar 

  • Maillot P, Kieffer F, Walter B (2006) Somatic embryogenesis from stem nodal sections of grapevine. Vitis 45:185–189

    Google Scholar 

  • Maillot P, Lebel S, Schellenbaum P, Jacques A, Walter B (2009) Differential regulation of SERK, LEC1-like and pathogenesis-related genes during indirect secondary somatic embryogenesis in grapevine. Plant Physiol Biochem 47:743–752

    CAS  PubMed  Google Scholar 

  • Mantiri FR, Kurdyukov S, Lohar DP, Sharopova N, Saeed NA, Wang X-D et al (2008) The transcription factor MtSERF1 of the ERF subfamily identified by transcriptional profiling is required for somatic embryogenesis induced by auxin plus cytokinin in Medicago truncatula. Plant Physiol 146:1622–1636

    CAS  PubMed Central  PubMed  Google Scholar 

  • Marcotte WR Jr, Bayley CC, Quatrano RS (1988) Regulation of a wheat promoter by abscisic acid in rice protoplasts. Nature 335:454–457

    CAS  Google Scholar 

  • Martin AB, Cuadrado Y, Guerra H, Gallego P, Hita O, Martin L et al (2000) Differences in the contents of total sugars, reducing sugars, starch and sucrose in embryogenic and non-embryogenic calli from Medicago arborea L. Plant Sci 154:143–151

    CAS  PubMed  Google Scholar 

  • Maxwell DP, Wang Y, McIntosh L (1999) The alternative oxidase lowers mitochondrial reactive oxygen production in plant cells. Proc Natl Acad Sci U S A 96:8271–8276

    CAS  PubMed Central  PubMed  Google Scholar 

  • McCabe PF, Valentine TA, Forsberg LS, Pennell RI (1997) Soluble signals from cells identified at the cell wall establish a developmental pathway in carrot. Plant Cell 9:2225–2241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Michalczuk L, Druart P (1999) Indole-3-acetic acid metabolism in hormone-autotrophic, embryogenic callus of Inmil cherry rootstock (Prunus incisa serrula “GM 9”) and in hormone-dependent, non-embryogenic calli of Prunus incisa serrula and Prunus domestica. Physiol Plant 107:426–443

    CAS  Google Scholar 

  • Michalczuk L, Cooke T, Cohen J (1992) Auxin levels at different stages of carrot somatic embryogenesis. Phytochemistry 31:1097–1103

    CAS  Google Scholar 

  • Mikuła A, Wilbik W, Rybczyński JJ (1998) Wplyw regulatoròw wzrostu na somatyczna embriogeneze Gentiana sp w kulturach in vitro. II Ogòlnopolska Konferencja Zastosowanie kultur in vitro wfizjologii roslin 141–154

    Google Scholar 

  • Minocha R, Minocha SC, Long S (2004) Polyamines and their biosynthetic enzymes during somatic embryo development in red spruce (Picea rubens Sarg.). In Vitro Cell Dev Biol Plant 40:572–580

    CAS  Google Scholar 

  • Mishra A, Khurana P (2003) Genotype dependent somatic embryogenesis and regeneration from leaf base cultures of Sorghum bicolor. J Plant Biochem Biotechnol 12:53–56

    Google Scholar 

  • Moghaieb REA, Youssef SS, Mohammed EHK, Draz AE-SE (2009) Genotype dependent somatic embryogenesis from Egyptian rice mature zygotic embryos. Aust J Basic Appl Sci 3:2570–2580

    CAS  Google Scholar 

  • Nagata T, Ishida S, Hasezawa S, Takahashi Y (1994) Genes involved in the dedifferentiation of plant cells. Int J Dev Biol 38:321–327

    CAS  PubMed  Google Scholar 

  • Namasivayam P (2007) Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tiss Org Cult 90:1–8

    CAS  Google Scholar 

  • Nissen P (1994) Stimulation of somatic embryogenesis in carrot by ethylene: effects of modulators of ethylene biosynthesis and action. Physiol Plant 92:397–403

    CAS  Google Scholar 

  • Noctor G, Foyer C (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–279

    CAS  PubMed  Google Scholar 

  • Nolan KE, Irwanto RR, Rose RJ (2003) Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiol 133:218–230

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nolan K, Saeed N, Rose R (2006) The stress kinase gene MtSK1 in Medicago truncatula with particular reference to somatic embryogenesis. Plant Cell Rep 25:711–722

    CAS  PubMed  Google Scholar 

  • Nolan KE, Kurdyukov S, Rose RJ (2009) Expression of the SOMATIC EMBRYOGENESIS RECEPTOR-LIKE KINASE1 (SERK1) gene is associated with developmental change in the life cycle of the model legume Medicago truncatula. J Exp Bot 60:1759–1771

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nole-Wilson S, Tranby TL, Krizek BA (2005) AINTEGUMENTA-like (AIL) genes are expressed in young tissues and may specify meristematic or division-competent states. Plant Mol Biol 57:613–628

    CAS  PubMed  Google Scholar 

  • Nomura K, Komamine A (1985) Identification and isolation of single cells that produce somatic embryos at a high frequency in a carrot cell suspension culture. Plant Physiol 79:988–991

    CAS  PubMed Central  PubMed  Google Scholar 

  • Okushima Y, Overvoordea PJ, Arimaa K, Alonsob JM, Chana A, Changa C et al (2005) Functional genomic analysis of the AUXIN RESPONSE FACTOR gene family members in Arabidopsis thaliana: unique and overlapping functions of ARF7 and ARF19. Plant Cell Physiol 17:444–463

    CAS  Google Scholar 

  • Omid K, Abbas S (2010) The molecular basis for stress-induced acquisition of somatic embryogenesis. Mol Biol Rep 37:2493–2507

    Google Scholar 

  • Ozias-Akins P, Anderson WF, Holbrook CC (1992) Somatic embryogenesis in Arachis hypogaea L.: genotype comparison. Plant Sci 83:103–111

    Google Scholar 

  • Pandey DK, Singh AK, Chaudhary B (2012) Boron-mediated plant somatic embryogenesis: a provocative model. J Bot 2012. doi:10.1155/2012/375829

  • Pandey, D. K. and Chaudhary, B. (2014) Oxidative stress responsive SERK1 gene directs the progression of somatic embryogenesis in cotton (Gossypium hirsutum L. cv. Coker 310). American J Plant Sci 5:80-102

    Google Scholar 

  • Passarinho P, Ketelaar T, Xing M, Van Arkel J, Maliepaard C, Hendriks M et al (2008) BABY BOOM target genes provide diverse entry points into cell proliferation and cell growth pathways. Plant Mol Biol 68:225–237

    CAS  PubMed  Google Scholar 

  • Patnaik D, Mahalakshmi A, Khurana P (2005) Effect of water stress and heavy metals on induction of somatic embryogenesis in wheat leaf base cultures. Indian J Exp Biol 43:740–745

    CAS  PubMed  Google Scholar 

  • Perez-Nunez M, Souza R, Seaenz L, Chan J, Zuniga-Aguilar J, Oropeza C (2009) Detection of a SERK-like gene in coconut and analysis of its expression during the formation of embryogenic callus and somatic embryos. Plant Cell Rep 28:11–19

    CAS  PubMed  Google Scholar 

  • Perrin M, Gertz C, Masson J (2004) High efficiency initiation of regenerable embryonic callus from anther filaments of 19-grapevine genotypes grown worldwide. Plant Sci 167:1343–1349

    CAS  Google Scholar 

  • Ptak A, Tahchy AE, Wyzgolik G, Henry M, Laurain-Mattar D (2010) Effects of ethylene on somatic embryogenesis and galanthamine content in Leucojum aestivum L. cultures. Plant Cell Tiss Org Cult 102:61–67

    CAS  Google Scholar 

  • Quiroz-Figueroa F, Rojas-Herrera R, Galaz-Avolos R, Loyola-Vargas V (2006) Embryo production through somatic embryogenesis can be used to study cell differentiation in plants. Plant Cell Tiss Org Cult 86:285–301

    Google Scholar 

  • Radojevic L (1979) Somatic embryos and plantlets from callus cultures of Paulownia tomentosa Steud. Z Pflanzenphysiol 9:57–62

    Google Scholar 

  • Rajasekaran K, Hein MB, Vasil IK (1987) Endogenous abscisic acid and indole-3-acetic acid and somatic embryogenesis in cultured leaf explants of Pennisetum purpureum Schum. Plant Physiol 84:47–51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rao AQ, Hussain SS, Shahzad MS, Bokhari SYA, Raza MH, Rakha A et al (2006) Somatic embryogenesis in wild relatives of cotton (Gossypium spp.). J Zhejiang Univ Sci B 7:291–298

    PubMed Central  PubMed  Google Scholar 

  • Remotti PC (1995) Primary and secondary embryogenesis from cell suspension cultures of Gladiolus. Plant Sci 107:205–214

    CAS  Google Scholar 

  • Robertson D, Weissinger AK, Ackley R, Glover S, Sederoff RR (1992) Genetic transformation of Norway spruce (Picea abies (L.) Karst) using somatic embryo explants by microprojectile bombardment. Plant Mol Biol 19:925–935

    CAS  PubMed  Google Scholar 

  • Rose RJ, Nolan KE (2006) Genetic regulation of somatic embryogenesis with particular reference to Arabidopsis thaliana and Medicago truncatula. In Vitro Cell Dev Biol 42:473–481

    CAS  Google Scholar 

  • Roustan J-P, Latché A, Fallot J (1990) Control of carrot somatic embryogenesis by AgNO3, an inhibitor of ethylene action: effect on arginine decarboxylase activity. Plant Sci 67:89–95

    CAS  Google Scholar 

  • Ruduś I, Kępczyńska E, Kępczyński J (2002) Regulation of Medicago sativa L. somatic embryogenesis by gibberellins. Plant Growth Regulat 36:91–95

    Google Scholar 

  • Sakhanokho HF, Ozias-Akins P, May OL, Chee PW (2004) Induction of somatic embryogenesis and plant regeneration in select Georgia and Pee Dee cotton lines. Crop Sci 44:2199–2205

    Google Scholar 

  • Santa-Catarina C, Oliveira RRd, Cutri L, Floh EIS, Dornelas MC (2012) WUSCHEL-related genes are expressed during somatic embryogenesis of the basal angiosperm Ocotea catharinensis Mez. (Lauraceae). Trees 26:493–501

    Google Scholar 

  • Santarem E, Pelissier B, Finer J (1997) Effect of explant orientation, pH, solidifying agent and wounding on initiation of soybean somatic embryos. In Vitro Cell Dev Biol Plant 33:13–19

    CAS  Google Scholar 

  • Santos M, Romano E, Yotoko K, Tinoco M, Dias B, Argao F (2005) Characterisation of the cacao somatic embryogenesis receptor-like kinase gene expressed during somatic embryogenesis. Plant Sci 168:723–729

    CAS  Google Scholar 

  • Sasaki K, Shimomura K, Kamada H, Harada H (1994) IAA metabolism in embryogenic and non-embryogenic carrot cells. Plant Cell Physiol 35:1159–1164

    CAS  Google Scholar 

  • Schiavone FM, Cooke TJ (1985) A geometric analysis of somatic embryo formation in carrot cell cultures. Can J Bot 63:1573–1578

    Google Scholar 

  • Schiavone FM, Cooke TJ (1987) Unusual patterns of somatic embryogenesis in the domesticated carrot: developmental effects of exogenous auxins and auxin transport inhibitors. Cell Differ 21:53–62

    CAS  PubMed  Google Scholar 

  • Schlögl PS, Santos ALWd, Vieira LdN, Floh EIS, Guerra MP (2012) Gene expression during early somatic embryogenesis in Brazilian pine (Araucaria angustifolia (Bert) O. Ktze). Plant Cell Tiss Org Cult 108:173–180

    Google Scholar 

  • Schmidt E, Guzzo F, Toonen M, De Vries S (1997) A leucine-rich repeat containing receptor-like kinase marks somatic plant cells competent to form embryos. Development 124:2049–2062

    CAS  PubMed  Google Scholar 

  • Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y et al (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J 31:279–292

    CAS  PubMed  Google Scholar 

  • Sharma S, Millam S, Hein I, Bryan G (2008) Cloning and molecular characterisation of a potato SERK gene transcriptionally induced during initiation of somatic embryogenesis. Planta 228:319–330

    CAS  PubMed  Google Scholar 

  • Shimada T, Hirabayashi T, Fujii H, Kita M, Omura M (2005) Isolation and characterization of the somatic embryogenesis receptor-like kinase gene homologue (CitSERK) from Citrus unshiu Marc. Sci Hort 103:233–238

    CAS  Google Scholar 

  • Singla B, Khurana JP, Khurana P (2008) Characterization of three somatic embryogenesis receptor kinase genes from wheat, Triticum aestivum. Plant Cell Rep 27:833–843

    CAS  PubMed  Google Scholar 

  • Srinivasan C, Liu Z, Heidmann I, Supena E, Fukuoka H, Joosen R et al (2007) Heterologous expression of the BABY BOOM AP2/ERF transcription factor enhances the regeneration capacity of tobacco (Nicotiana tabacum L.). Planta 225:341–351

    CAS  PubMed  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    CAS  PubMed  Google Scholar 

  • Steiner N, Santa-Catarina C, Guerra MP, Cutri L, Dornelas MC, Floh EIS (2012) A gymnosperm homolog of somatic embryo receptor like kinase (SERK1) is expressed during somatic embryogenesis. Plant Cell Tiss Org Cult 109:41–50

    CAS  Google Scholar 

  • Steward F, Mapes M, Hears K (1958) Growth and organized development of cultured cells. II. Growth and division of freely suspended cells. Am J Bot 45:705–708

    Google Scholar 

  • Su Y, Zhao X, Liu Y, Zhang C, O’Neill S, Zhang X (2009) Auxin-induced WUS expression is essential for embryonic stem cell renewal during somatic embryogenesis in Arabidopsis. Plant J 59:448–460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Takano J, Wada M, Ludewig U, Schaaf G, von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1509

    PubMed Central  PubMed  Google Scholar 

  • Takeda T, Inose H, Matsuoka H (2003) Stimulation of somatic embryogenesis in carrot cells by the addition of calcium. Biochem Eng J 14:143–148

    CAS  Google Scholar 

  • Tereso S, Zoglauer K, Milhinhos A, Miguel C, Oliveira M (2007) Zygotic and somatic embryo morphogenesis in Pinus pinaster: comparative histological and histochemical study. Tree Physiol 27:661–669

    CAS  PubMed  Google Scholar 

  • Thibaud-Nissen F, Shealy R, Khanna A, Vodkin L (2003) Clustering of microarray data reveals transcript patterns associated with somatic embryogenesis in soybean. Plant Physiol 132:118–136

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomas C, Meyer D, Himber C, Steinmetz A (2004) Spatial expression of a sunflower SERK gene during induction of somatic embryogenesis and shoot organogenesis. Plant Physiol Biochem 42:35–42

    CAS  PubMed  Google Scholar 

  • Tokuji Y, Kuriyama KJ (2003) Involvement of gibberellin and cytokinin in the formation of embryogenic cell clumps in carrot (Daucus carota). Plant Physiol 160:133–141

    CAS  Google Scholar 

  • Toonen MAJ, De Vries SC (1996) Initiation of somatic embryos from single cells. In: Wang TL, Cuming A (eds) Embryogenesis: the generation of a plant. Bios Scientific Publishers, Oxford, pp 173–189

    Google Scholar 

  • Touraev A, Vicente O, Heberlebors E (1997) Initiation of microspore embryogenesis by stress. Trends Plant Sci 2:297–302

    Google Scholar 

  • Trolinder N, Goodin J (1987) Somatic embryogenesis and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Rep 6:231–234

    CAS  PubMed  Google Scholar 

  • Trolinder NL, Xhixian C (1989) Genotype specificity of the somatic embryogenesis response in cotton. Plant Cell Rep 8:133–136

    CAS  PubMed  Google Scholar 

  • Tsuchisaka A, Yu G, Jin H, Alonso J, Ecker J, Zhang X et al (2009) A combinatorial interplay among the 1-aminocyclopropane-1-carboxylate isoforms regulates ethylene biosynthesis in Arabidopsis thaliana. Genetics 183:979–1003

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vahdati K, Bayat S, Ebrahimzadeh H, Jariteh M, Mirmasoumi M (2008) Effect of exogenous ABA on somatic embryo maturation and germination in Persian walnut (Juglans regia L.). Plant Cell Tiss Org Cult 93:163–171

    CAS  Google Scholar 

  • Vain P, Flament P, Soudain P (1989) Role of ethylene in embryogenic callus initiation and regeneration in Zea mays L. J Plant Physiol 135:537–540

    Google Scholar 

  • Wang D, Pei K, Fu Y, Sun Z, Li S, Liu H et al (2007) Genome-wide analysis of the auxin response factors (ARF) gene family in rice (Oryza sativa). Gene 394:13–24

    CAS  PubMed  Google Scholar 

  • Warren WJ, Warren WP (1993) Mechanisms of auxin regulation of structural and physiological polarity in plants, tissues, cells and embryos. Aust J Plant Physiol 20:555–571

    Google Scholar 

  • Wei Tan (2001) Somatic embryogenesis and peroxidase activity of desiccation tolerant mature somatic embryos of loblolly pine. J Forestry Res 12(3):147–152

    Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Montagu MV et al (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wiśniewskaa A, Grabowskab A, Pietraszewska-Bogielc A, Tagashirad N, Zuzgac S, Wóycickic R et al (2012) Identification of genes up-regulated during somatic embryogenesis of cucumber. Plant Physiol Biochem 50:54–64

    Google Scholar 

  • Wójcikowska B, Jaskóła K, Gąsiorek P, Meus M, Nowak K, Gaj MD (2013) LEAFY COTYLEDON2 (LEC2) promotes embryogenic induction in somatic tissues of Arabidopsis, via YUCCA-mediated auxin biosynthesis. Planta 1–16. doi:10.1007/s00425-013-1892-2

  • Xu Z, Zhang C, Zhang X, Liu C, Wu Z, Yang Z et al (2013) Transcriptome profiling reveals auxin and cytokinin regulating somatic embryogenesis in different sister lines of cotton cultivar CCRI24. J Integr Plant Biol 55:631–642

    CAS  PubMed  Google Scholar 

  • Yang H, Saitou T, Komeda Y, Harada H, Kamada H (1996) Late embryogenesis abundant protein in Arabidopsis thaliana homologous to carrot ECP31. Physiol Plant 98:661–666

    CAS  Google Scholar 

  • Yang H, Saitou T, Komeda Y, Harada H, Kamada H (1997) Arabidopsis thaliana ECP63 encoding a LEA protein is located in chromosome 4. Gene 184:83–88

    CAS  PubMed  Google Scholar 

  • Yang X, Zhang X, Yuan D, Jin F, Zhang Y, Xu J (2012) Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton. BMC Plant Biol 12. doi:10.1186/471-2229-12-110

  • Yang X, Wang L, Yuan D, Lindsey K, Zhang X (2013) Small RNA and degradome sequencing reveal complemiRNA regulation during cotton somatic embryogenesis. J Exp Bot 64:1521–1536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yasuda T, Fujii Y, Yamaguchi T (1985) Embryogenic callus induction from Coffea arabica leaf explants by benzyladenine. Plant Cell Physiol 26:595–597

    CAS  Google Scholar 

  • Zdravković-Korać S, Nešković M (1999) Induction and development of somatic embryos from spinach (Spinacia oleracea) leaf segments. Plant Cell Tiss Org Cult 55:109–114

    Google Scholar 

  • Zhang C-X, Yao Z-Y, Zhao Z, Qi J-H (1997) Histological observation of somatic embryogenesis from cultured embryos of Quercus variabilis B1. J Plant Physiol Mol Biol 33:33–38

    CAS  Google Scholar 

  • Zhang B-H, Feng R, Liu F, Wang Q (2001) High frequency somatic embryogenesis and plant regeneration of an elite Chinese cotton variety. Bot Bull Acad Sin 42:9–16

    Google Scholar 

  • Zheng Q, Zheng Y, Perry SE (2013) AGAMOUS-Like15 promotes somatic embryogenesis in Arabidopsis and soybean in part by the control of ethylene biosynthesis and response. Plant Physiol 161:2113–2127

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhenga Y, Renb N, Wanga H, Strombergb AJ, Perrya SE (2009) Global identification of targets of the Arabidopsis MADS domain protein AGAMOUS-Like15. Plant Cell 21:2563–2577

    Google Scholar 

  • Zou X, Seemann JR, Neuman D, Shen QJ (2004) A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. J Biol Chem 279:55770–55779

    CAS  PubMed  Google Scholar 

  • Zuo J, Niu Q-W, Frugis G, Chua N-H (2002) The WUSCHEL gene promotes vegetative-to-embryonic transition in Arabidopsis. Plant J 30:349–359

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bhupendra Chaudhary Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Pandey, D.K., Chaudhary, B. (2015). Genes and Trans-Factors Underlying Embryogenic Transition in Plant Soma-Cells. In: Sablok, G., Kumar, S., Ueno, S., Kuo, J., Varotto, C. (eds) Advances in the Understanding of Biological Sciences Using Next Generation Sequencing (NGS) Approaches. Springer, Cham. https://doi.org/10.1007/978-3-319-17157-9_10

Download citation

Publish with us

Policies and ethics