Molecular Dynamics Simulation

Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)


This section provides a compact description of the basics of MD simulation. It only covers topics that are required to understand MD simulation in process engineering, i.e. in particular molecular modeling, the computation of potentials and forces, as well as the efficient identification of neighboring molecules. Here focus is put on single- and multi-center interactions based on the Lennard-Jones potential for short-range interactions. These detailed descriptions help to elaborate the differences between MD in process engineering and other fields and motivate the development of a specialized code. Such a code is ls1 mardyn, whose optimizations are discussed in the up-coming chapters. At the end of the section we provide the general layout of the software.


Molecular dynamics simulation Molecular interactions Short-range interactions Linked-cells algorithm Lennard-Jones potential Single-center interactions Multi-center interactions ls1 mardyn 


  1. 1.
    J.-P. Ryckaert, G. Ciccotti, H.J. Berendsen, Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J. Comput. Phys. 23(3), 327–341 (1977)CrossRefGoogle Scholar
  2. 2.
    T.R. Forester, W. Smith, SHAKE, rattle, and roll: efficient constraint algorithms for linked rigid bodies. J. Comput. Chem. 19(1), 102–111 (1998)CrossRefGoogle Scholar
  3. 3.
    B. Hess, P-LINCS: a parallel linear constraint solver for molecular simulation. J. Chem. Theory Comput. 4(1), 116–122 (2008)CrossRefGoogle Scholar
  4. 4.
    D. Fincham, Leap frog rotational algorithms. Mol. Simul. 8, 165–178 (1992)CrossRefGoogle Scholar
  5. 5.
    J.B. Kuipers, Quaternions and rotation sequences (Princeton University Press, Princeton, 1999)Google Scholar
  6. 6.
    C. Niethammer, S. Becker, M. Bernreuther, M. Buchholz, W. Eckhardt, A. Heinecke, S. Werth, H.-J. Bungartz, C.W. Glass, H. Hasse, J. Vrabec, M. Horsch, ls1 mardyn: the massively parallel molecular dynamics code for large systems. J. Chem. Theory Comput. (2014)Google Scholar
  7. 7.
    H.A. Lorentz, Über die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Ann. Phys., 12(1):127–136, (1881). Addendum 12(4):660–661Google Scholar
  8. 8.
    D. Berthelot, Sur le mélange des gaz. Comptes rendus hebdomadaires des séances de l’Académie des Sciences, 126:1703–1706, (1898). Addendum: vol. 126, no. 4, pp. 1857–1858Google Scholar
  9. 9.
    T. Schnabel, J. Vrabec, H. Hasse, Unlike Lennard-Jones parameters for vapor-liquid equilibria. J. Mol. Liq. 135, 170–178 (2007)CrossRefGoogle Scholar
  10. 10.
    C.G. Gray, K.E. Gubbins, Theory of molecular fluids, Volume 1: Fundamentals (Clarendon Press, Oxford, 1984)Google Scholar
  11. 11.
    M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1989)CrossRefGoogle Scholar
  12. 12.
    J. Barker, R. Watts, Monte Carlo studies of the dielectric properties of water-like models. Mol. Phys. 26(3), 789–792 (1973)CrossRefGoogle Scholar
  13. 13.
    R. Clausius, XVI on a mechanical theorem applicable to heat. Philos. Mag. Ser. 4, 40(265):122–127 (1870)Google Scholar
  14. 14.
    P.H. Hünenberger, Thermostat algorithms for molecular dynamics simulations, Advanced Computer Simulation (Springer, Berlin, 2005), pp. 105–149CrossRefGoogle Scholar
  15. 15.
    L. Woodcock, Isothermal molecular dynamics calculations for liquid salts. Chem. Phys. Lett. 10(3), 257–261 (1971)CrossRefGoogle Scholar
  16. 16.
    L. Verlet, Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. Online Arch. (Prola) 159(1), 98–103 (1967)Google Scholar
  17. 17.
    S. Pll, B. Hess, A flexible algorithm for calculating pair interactions on SIMD architectures. Comput. Phys. Commun., (2013). Accepted for publicationGoogle Scholar
  18. 18.
    R. Hockney, S. Goel, J. Eastwood, Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14(2), 148–158 (1974)CrossRefGoogle Scholar
  19. 19.
    P. Schofield, Computer simulation studies of the liquid state. Comput. Phys. Commun. 5(1), 17–23 (1973)CrossRefGoogle Scholar
  20. 20.
    M. Bernreuther, H.-J. Bungartz, Molecular simulation of fluid flow on a cluster of workstations, in Proceedings of the 18th Symposium Simulationstechnique (ASIM 2005), Volume 15 of Fortschritte in der Simulationstechnik—Frontiers in Simulation, ed. by F. Hülsemann, M. Kowarschik, U. Rüde (SCS European Publishing House, Erlangen, 2005), pp. 117–123Google Scholar
  21. 21.
    G. Sutmann, V. Stegailov, Optimization of neighbor list techniques in liquid matter simulations. J. Mol. Liq. 125, 197–203 (2006)CrossRefGoogle Scholar
  22. 22.
    M. Buchholz, Framework zur Parallelisierung von Molekulardynamiksimulationen in verfahrenstechnischen Anwendungen. Dissertation, Institut für Informatik, Technische Universität München (2010)Google Scholar
  23. 23.
    P. Gonnet, A simple algorithm to accelerate the computation of non-bonded interactions in cell-based molecular dynamics simulations. J. Comput. Chem. 28(2), 570–573 (2007)CrossRefGoogle Scholar
  24. 24.
    U. Welling, G. Germano, Efficiency of linked cell algorithms. Comput. Phys. Commun. 182(3), 611–615 (2011)CrossRefzbMATHGoogle Scholar
  25. 25.
    J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)CrossRefGoogle Scholar
  26. 26.
    B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, Gromacs 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. J. Chem. Theory Comput. 4(3), 435–447 (2008)CrossRefGoogle Scholar
  27. 27.
    K.J. Bowers, E. Chow, H. Xu, R.O. Dror, M.P. Eastwood, B.A. Gregersen, J.L. Klepeis, I. Kolossvary, M.A. Moraes, F.D. Sacerdoti, J.K. Salmon, Y. Shan, D.E. Shaw, Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, SC ’06, ACM, New York, USA (2006)Google Scholar
  28. 28.
    B.R. Brooks, C.L. Brooks, A.D. Mackerell, L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch et al., CHARMM: the biomolecular simulation program. J Comput. Chem. 30(10), 1545–1614 (2009)CrossRefGoogle Scholar
  29. 29.
    R. Salomon-Ferrer, D.A. Case, R.C. Walker, An overview of the Amber biomolecular simulation package (Computational Molecular Science, Wiley Interdisciplinary Reviews, 2012)Google Scholar
  30. 30.
    A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger, D. Roehm, P. Košovan, C. Holm, Espresso 3.1: molecular dynamics software for coarse-grained models, in meshfree methods for partial differential equations VI, p. 1–23. (Springer, 2013)Google Scholar
  31. 31.
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRefzbMATHGoogle Scholar
  32. 32.
    D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)CrossRefGoogle Scholar
  33. 33.
    M. Griebel, S. Knapek, G.W. Zumbusch, Numerical simulation in molecular dynamics: numerics, algorithms, parallelization, applications, vol 5. (Springer, 2007)Google Scholar
  34. 34.
    B. Eckl, J. Vrabec, H. Hasse, On the application of force fields for predicting a wide variety of properties: ethylene oxide as an example. Fluid Phase Equilib. 274(1–2), 16–26 (2008)CrossRefGoogle Scholar
  35. 35.
    T. Merker, C. Engin, J. Vrabec, H. Hasse, Molecular model for carbon dioxide optimized to vapor-liquid equilibria. J. Chem. Phys., 132(23), (2010)Google Scholar
  36. 36.
    The ls1 mardyn website (2014),
  37. 37.
    S. Deublein, B. Eckl, J. Stoll, S.V. Lishchuk, G. Guevara-Carrion, C.W. Glass, T. Merker, M. Bernreuther, H. Hasse, J. Vrabec, ms2: a molecular simulation tool for thermodynamic properties. Comput. Phys. Commun. 182(11), 2350–2367 (2011)CrossRefGoogle Scholar
  38. 38.
    K.E. Gubbins, J.D. Moore, Molecular modeling of matter: impact and prospects in engineering. Ind. Eng. Chem. Res. 49(7), 3026–3046 (2010)CrossRefGoogle Scholar
  39. 39.
    E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design patterns: elements of reusable object-oriented software. (Addison-Wesley, 1994)Google Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  1. 1.Intel CorporationSanta ClaraUSA
  2. 2.Technische Universität MünchenGarchingGermany
  3. 3.University of KaiserslauternKaiserslauternGermany

Personalised recommendations