Skip to main content

Part of the book series: SpringerBriefs in Computer Science ((BRIEFSCOMPUTER))

  • 1276 Accesses

Abstract

This chapter outlines the work “Supercomputing for Molecular Dynamics Simulations: Handling Multi-Trillion Particles in Nanofluidics” and defines the overall scope of this book. Several flavors of molecular dynamics (MD) simulation are introduced, and we point out the different requirements on MD depending on the field in which MD is applied. Since we focus on the application of MD in the relatively new domain of process engineering, we discuss which ideas from molecular biology and its mature simulation codes can be re-used and which need to be re-thought. This is necessary since both molecular models as well as particle numbers used in computational molecular engineering noticeably vary from molecular biology. Furthermore, we outline the methodology and structure if this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section is based on M. Horsch, C. Niethammer, J. Vrabec, H. Hasse: Computational molecular engineering as an emerging technology in process engineering, Information Technology 55 (2013) 97–101. It represents joint work of the mentioned authors.

References

  1. B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. I. General method. J. Chem. Phys. 31(2), 459–466 (1959)

    Article  MathSciNet  Google Scholar 

  2. A. Rahman, Correlations in the motion of atoms in liquid argon. Phys. Rev. 136A(2A), 405–411 (1964)

    Article  Google Scholar 

  3. D.E. Shaw, R.O. Dror, J.K. Salmon, J. Grossman, K.M. Mackenzie, J.A. Bank, C. Young, M.M. Deneroff, B. Batson, K.J. Bowers et al., Millisecond-scale molecular dynamics simulations on Anton, in Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, pp. 1–11. (IEEE, 2009)

    Google Scholar 

  4. D.B. Kitchen, H. Decornez, J.R. Furr, J. Bajorath, Docking and scoring in virtual screening for drug discovery: methods and applications. Nat. Rev. Drug Discov. 3(11), 935–949 (2004)

    Article  Google Scholar 

  5. M.T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L.V. Kalé, R.D. Skeel, K. Schulten, NAMD: a parallel, object-oriented molecular dynamics program. Int. J. High Perform. Comput. Appl. 10(4), 251–268 (1996)

    Article  Google Scholar 

  6. D. van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, GROMACS: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005)

    Article  Google Scholar 

  7. B.R. Brooks, C.L. Brooks, A.D. Mackerell, L. Nilsson, R.J. Petrella, B. Roux, Y. Won, G. Archontis, C. Bartels, S. Boresch et al., CHARMM: the biomolecular simulation program. J. Comput. Chem. 30(10), 1545–1614 (2009)

    Article  Google Scholar 

  8. N. Schmid, A.P. Eichenberger, A. Choutko, S. Riniker, M. Winger, A. Mark, W. Gunsteren, Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur. Biophys. J. 40(7), 843–856 (2011)

    Article  Google Scholar 

  9. W.L. Jorgensen, J. Tirado-Rives, The OPLS [optimized potentials for liquid simulations] potential functions for proteins, energy minimizations for crystals of cyclic peptides and crambin. J. Am. Chem. Soc. 110(6), 1657–1666 (1988)

    Article  Google Scholar 

  10. D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M. Merz, A. Onufriev, C. Simmerling, B. Wang, R.J. Woods, The Amber biomolecular simulation programs. J. Comput. Chem. 26(16), 1668–1688 (2005)

    Article  Google Scholar 

  11. R. Susukita, T. Ebisuzaki, B.G. Elmegreen, H. Furusawa, K. Kato, A. Kawai, Y. Kobayashi, T. Koishi, G.D. McNiven, T. Narumi, K. Yasuoka, Hardware accelerator for molecular dynamics: MDGRAPE-2. Comput. Phys. Commun. 155(2), 115–131 (2003)

    Article  Google Scholar 

  12. D. E. Shaw, M. M. Deneroff, R. O. Dror, J. S. Kuskin, R. H. Larson, J. K. Salmon, C. Young, B. Batson, K. J. Bowers, J. C. Chao, M. P. Eastwood, J. Gagliardo, J. P. Grossman, C. R. Ho, D. J. Ierardi, I. Kolossváry, J. L. Klepeis, T. Layman, C. McLeavey, M. A. Moraes, R. Mueller, E. C. Priest, Y. Shan, J. Spengler, M. Theobald, B. Towles, S. C. Wang, Anton, a special-purpose machine for molecular dynamics simulation, in ACM SIGARCH Computer Architecture News, vol. 35, pp. 1–12. (ACM, 2007)

    Google Scholar 

  13. F. Streitz, J. Gosli, M. Patel, B. Chan, R. Yates, B. de Supinski, J. Sexton, and J. Gunnels. 100+ TFLOP solidification simulations on BlueGene/L, in Proceedings of IEEE/ACM Supercomputing’05 (2005)

    Google Scholar 

  14. E. Hendriks, G.M. Kontogeorgis, R. Dohrn, J.-C. de Hemptinne, I.G. Economou, L.F. Zilnik, V. Vesovic, Industrial requirements for thermodynamics and transport properties. Ind. Eng. Chem. Res. 49(22), 11131–11141 (2010)

    Article  Google Scholar 

  15. O. Konrad, Molekulardynamische Simulationen zur Solvation von Methan in Wasser. Ph.D. thesis, Universität Hamburg, 2008

    Google Scholar 

  16. M. P. Allen, D. J. Tildesley, Computer Simulation of Liquids. Oxford University Press, Oxford (1989)

    Google Scholar 

  17. P. Ungerer, C. Nieto Draghi, B. Rousseau, G. Ahunbay, V. Lachet, Molecular simulation of the thermophysical properties of fluids: From understanding toward quantitative predictions. J. Mol. Liq. 134, 71–89 (2007)

    Article  Google Scholar 

  18. R. Lustig, Direct molecular NVT simulation of the isobaric heat capacity, speed of sound, and Joule-Thomson coefficient. Mol. Simul. 37(6), 457–465 (2011)

    Article  MATH  Google Scholar 

  19. F. Rösch, H.-R. Trebin, Crack front propagation by kink formation. Europhys. Lett. 87, 66004 (2009)

    Article  Google Scholar 

  20. S. Deublein, B. Eckl, J. Stoll, S.V. Lishchuk, G. Guevara-Carrion, C.W. Glass, T. Merker, M. Bernreuther, H. Hasse, J. Vrabec, ms2: a molecular simulation tool for thermodynamic properties. Comput. Phys. Commun. 182(11), 2350–2367 (2011)

    Article  Google Scholar 

  21. K. Binder, Applications of Monte Carlo methods to statistical physics. Rep. Prog. Phys. 60(5), 487–559 (1997)

    Article  Google Scholar 

  22. B. Eckl, J. Vrabec, H. Hasse, Set of molecular models based on quantum mechanical ab initio calculations and thermodynamic data. J. Phys. Chem. B 112(40), 12710–12721 (2008)

    Article  Google Scholar 

  23. G. Guevara Carrión, H. Hasse, and J. Vrabec, Thermodynamic properties for applications in chemical industry via classical force fields, in Multiscale Molecular Methods in Applied Chemistry, number 307 in Topics in Current Chemistry (Springer, Heidelberg, 2012), pp. 201–249

    Google Scholar 

  24. B. Eckl, J. Vrabec, H. Hasse, On the application of force fields for predicting a wide variety of properties: ethylene oxide as an example. Fluid Phase Equilibria 274(1–2), 16–26 (2008)

    Article  Google Scholar 

  25. M.G. Martin, J.I. Siepmann, Novel configurational-bias Monte Carlo method for branched molecules. Transferable potentials for phase equilibria. 2. United-atom description of branched alkanes. J. Phys. Chem. B 103(21), 4508–4517 (1999)

    Article  Google Scholar 

  26. M. Horsch, J. Vrabec, M. Bernreuther, H. Hasse, Poiseuille flow of liquid methane in nanoscopic graphite channels by molecular dynamics simulation, in Proceedings of the 6th International Symposium on Turbulence, Heat and Mass Transfer, ed. by K. Hanjalić (Begell House, New York, 2009), pp. 89–92

    Google Scholar 

  27. J.C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R.D. Skeel, L. Kale, K. Schulten, Scalable molecular dynamics with NAMD. J. Comput. Chem. 26(16), 1781–1802 (2005)

    Article  Google Scholar 

  28. S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117(1), 1–19 (1995)

    Article  MATH  Google Scholar 

  29. T.C. Germann, K. Kadau, Trillion-atom molecular dynamics becomes a reality. Int. J. Mod. Phys. C 19(09), 1315–1319 (2008)

    Article  MATH  Google Scholar 

  30. R. Hockney, S. Goel, J. Eastwood, Quiet high-resolution computer models of a plasma. J. Comput. Phys. 14(2), 148–158 (1974)

    Article  Google Scholar 

  31. W. Eckhardt, Efficient HPC implementations for large-scale molecular simulation in process engineering. Ph.D. thesis, Institut für Informatik, Technische Universität München, München, 2014. Dissertation available from publishing house Dr. Hut under ISBN: 978-3-8439-1746-9

    Google Scholar 

  32. A. Heinecke, Boosting scientific computing applications through leveraging data parallel architectures. Ph.D. thesis, Institut für Informatik, Technische Universität München, 2014. Dissertation available from publishing house Dr. Hut under ISBN: 978-3-8439-1408-6

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Heinecke .

Rights and permissions

Reprints and permissions

Copyright information

© 2015 The Author(s)

About this chapter

Cite this chapter

Heinecke, A., Eckhardt, W., Horsch, M., Bungartz, HJ. (2015). Introduction. In: Supercomputing for Molecular Dynamics Simulations. SpringerBriefs in Computer Science. Springer, Cham. https://doi.org/10.1007/978-3-319-17148-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17148-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17147-0

  • Online ISBN: 978-3-319-17148-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics